AM-RII STATICHE WORLD-INIDE SHOPT-WAVE LISTINGS $75 \&$ UUNE-JULY

Music from transistors and computer oircuitry!

TEST REPORTS:
KLH Moted 18 Stereo Fh Tuner

Knight KN-400na Tape Transport and Kaight KP-70 Preamp

Raymer Moicl 471 SCA Music Adapter

Build a SWIMIE-TALKIE!

TALK VIA LIGHT BEAM! 515 SCIENGE FAIR PROdEGT

Pep up receiver selectivity with a mechanical filter!

Anyone Can Build These High Quality Precision SEM Kits At a Substantial Savings

Precision Decade Resistance Box

Designed so the electronic experimenter can get any value of resistance at 1% accuracy. Made of precision compo. nents, this decade box offers such advantages as fast fingertip switching from any resistance value from 1 ohm to 1,111,110 ohms within sec. onds. Add or subtract as little as 1 ohm with 1% ac. curacy. And ordinary hand tools are all that's needed to assemble it in less than 2 hours.

All Purpose Shop Tachometer

This tachometer is guaranteed to outperform any $\$ 50$ tach available today or your money will be refunded. This tach belongs in the tool chest of every machinist, electrician, model maker, motor serviceman and inventor. A six position rotary switch enables you to select three speed ranges in either forward or reverse rotation. Three ranges $-0-500,5000$ and 15,000-cover the gamut of rpms in the home work. shop or laboratory on machine tools, such as lathe cutting speeds, motor rpm, drilling speeds and other motor driven tools where rpm is an important factor.

Pocket-Size Hearing Aid

New hearing aid design provides a minimum of 42 decibels of gain and is adequate for 75% of all cases of partial deafness. The aid weighs only three ounces and is smaller than a king-size cigarette pack. Uses latest electromagnetic earphone and miniature crystal micro. phone. Powered by a $10 \nless$ pen light flashlight battery and has a switch for turning power off when not in use and a control that lets you adjust the volume to a com. fortable sound level.

SCIENCE \& MECHANICS, KIT DIVISION

505 Park Avenue, New York, N. Y. 10022
Please send the S\&M kits that have complete asssembly plans. or the assembled and fully tested electronic aids checked below. I understand that if I am not completely satisfied I may return the kits within 10 days for a complete refund of the purchase price.

$$
\begin{array}{lll}
\text { Hearing Aid } & \square \$ 24.95 \text { Kit } & \square \$ 34.95 \text { Assembled } \\
\text { Tachometer } & \square \$ 16.95 \text { Kit } & \square \$ 21.95 \text { Assembled } \\
\text { Decade Box } & \square \$ 24.95 \text { Kit } & \square \$ 29.95 \text { Assembled }
\end{array}
$$

Add 10% for Canadian and Foreign orders. New York City residents add 4% for N.Y.C. sales tax.
NAME
(Please Print)
ADDRESS \qquad
CITY STATE

[^0][^1]
Let I.C.S. equip you for success in radio-TV-electronics-

 with professional equipment!Brand-new "Electronic Laboratory," now being offered for the first time, can help you land in this big money-making field-FAST!
Here's an opportunity for you to turn spare time into cold cash, or begin a whole new career - in a field where the rewards have never been greater. And you don't need previous experience to do it!

International Correspondence Schools has just developed a new I. C.S. Electronic Laboratory you can construct in your own home. Includes series of training kits, plus the new I.C.S. VTVM - the professional quality vacuum tube voltmeter shown here. With it comes complete course instruction combining all the fundamentals with practical knowledge you can apply at once. And best of all, you build your own professional test instrument!

I.C.S. instruction gets you going with equipment you can really use!

A famous manufacturer of nationally known electronic testing equipment worked closely with I. C.S. to develop the Electronic Laboratory and the VTVM itself. Everything you get is geared to increase your skill and knowledge step by step. Until finally, you've completed a precision testing
unit you can use for practically any kind of experimentation, design or servicing work.

Here's how I. C. S. instruction works. You begin with basic study lessons. Texts are clearly wo-ded and easy to follow. At the same time, you "act out" what you learn with simple experiments. Then, in 3 easy stages, you assemble your own precision testing unit. Throughout, your instructor gives you expert, professional help. You learn at home, in spare time, as fast as ability permits.

Coupon brings full details on your future in this fast-growing field!

Make up your mind right now to find out how 1.C.S. training in Radio-TV-Electronics can pay off for you. See how it can help you cash in on the tremendous demand for men skilled in ir.stallation, maintenance and servicing of radios, TV sets, hi-fis, computers, automation systems and a host of other space-age devices. Clip and mail the coupon below. You'll receive 3 valuable free hooklets-including sample lesson. They'll show how you can land in this big money-making field fast!
Coupon brings 3 valuable FREE booklets. Mail it today!

INTERHATIONAL CORRESPONDENGE SGHOOLS

DEPT. 785, SCRANTON, PENNA. 18515 In Hawaii reply P. O. Box 4i8, Honolulu. In Canada, I.C.S. Canadian, Ltd., Montreal
Please rush me "How to Succeed," sample study lesson and opportunity booklet in the field I've checked below.

RADIO-TV-ELECTRONICS
\square Electronic Fundamentals Electronic Technician \square F.C.C. License I | General Electronics Industrial Electronics \square Instrumentation, Servos Automation Electronics
\square Radio-TV Servicing

ELECTRICAL

\square Electrical Drafting
I I Elertrical Engrg.
\square Elen:, Engrg. Technician
E Electric Light \& Power

- Practical Electrician

EProfessional Elec. Engr.

OTHER FIELDS
\square Architecture-Building
\square Art
\square Automotive
Business
Engineering
High School
NOT LISTED, PLEASE SPECIFY
\qquad Age \qquad Home Address

City
Zone
State \qquad Working hours \qquad A.M. to \qquad P.M.

Employed by Occupation
Special low rates to members of U. S. Armed Forces

PADID－TI EXPERIMENTER

Cover Photo by Don Lothrop

June－July， 1965 CONTENTS／INDEX	喜	$\begin{aligned} & \text { 층 } \\ & \text { 皆 } \end{aligned}$	등 흔 는 3			$\frac{\underset{i}{\sum}}{\underset{i}{\sum}}$	$\begin{aligned} & \text { 드む } \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\omega} \end{aligned}$	资
28 QSO＇ing the Meter．	－			\bullet				
31 Riddle of the Red Planet．	－	－				－		－
37 Mechanical Filter．．．		－	－	－				
（43 Aqua－Com（Swimie－Talkie）．．．		－	－		－			－
47 Organs Without Pipes．	－	－			－			\bullet
52 Atomic Powered Lighthouse．．．	－							－
54 Talk on a Light Beam．		－	－		－			－
56 Current Clamp．		－	－				－	
59 Private Radio War Against Castro	－			－		－		－
61 Lab Check－Raymer SCA．	－	－			－	－		
63 Lab Check－KLH Tuner．	－	－			－	－		
65 Lab Check－Knight Tape System	－	－			－			
68 Propagation Forecast．		－		－				
69 Tape Testing Made Easy．．．．		－	－		－		－	
73 Stereo Compact．		－	－		－			
78 Power Transistor Tester．		－	－			－	－	
81 Static Caper．．．	－			－				
83 UHF Antenna Installation．．．．．	－	－				－		－
89 Build Winky Dink．．．．．．．．．．．．		－	\bullet					－

WHITE＇S RADIO LOG，Vol．43，No．3—Page 98
DEPARTMENTS • Bookmark 6 －New Products 17
Ask Me Another 23 －Classified Ads 95 －Literature Library 96

NOW THERE ARE 51 RADIO SHACKS COAST TO COAST

CALIFORNIA

BAKEASFIELO－ 1308 19th St．322－8448
LOS ANGELES（Downeyl－Stonewood Shop．Ctr， 923.1709

SAN OIEGO（La Mesal－Grossmont Shon．Ctr， 4654062
LONG BEACH－ 127 W．7th St． 4323318
LONG BEACH－3976 Atlantic Ave，426－7514 OAKLANO（San Leandro）－Bay Fair Shop．Ctr 351.2990

CONNECTICUT
HAMOEN－Hamden Mart Shop．Ctr
MANCHESTER－Manchester Shopping Parkade
NEW HAVEN－ 92 York St． 787.7121
NEW LAVEN－ 92 York St．
STAMFORO－ 29 HIgh Ridge Rd．， 325.4371
WEST HARTF ORO－ 39 So．Main St．236．544t

> ILLINOIS

CHICAGO－Evergreen Plaza at 95th St， 636.9796

MAINE
PORTLANO－Pine Free Shop．Ctr．，773－7071 MASSACHUSETTS
BOSTON－ 167 Washington St．，523－4719
BOSTON－ 594 Washington St， $426-3431$
BOSTON－ 110 Federal St．， 42 E． 3997
BRAINTREE－South Shore Plaza 843－9200
BROOKLINE－ 730 Commanwealth Ave 734．1000
Cambrigge－Fresh Pond Shop．Ctr．．491－2925
FRAMINGHAM－Shoppers＇World．B72－6569
LOWELL－Central Shop Plaza，455－5469
SAUGUS－N E．Shop．Ctr．，233－5350
SPRJNGFIELO－ 1182 Main St．，734－2189 WORCESTER－Lincoln Plaza 757－9030 MINNESOTA
ST．PAUL－ 16 E．6th St． 222.4801 NEW HAMPSHIRE
MANCHESTER－ 1247 EIm St 669．1303 NEW MEXICO
ALBUQUERQUE－ 6315 Lomas N．E． 268.5722 NEW YORK
NEW YORK－ 1128 Ave of the Americas 687.4482

SYRACUSE－ 3057 Erie Blvd．East， 446.4990 OHIO
CINCINNATI－ 852 Swifton Ctr．631－4570 OKLAHOMA
OKLAHOMA CITY－Mayfair Shop．Ctr．
TULSA－ 317 South Oetroit St． 582.3401 PENNSYLVANIA
PHILAOELPHIA－2327G Cottman Ave，
Roosevelt Mall．338－4711
PHILAOELPHIA－ 1128 Walnut St． 923.2198 RHODE ISLAND
CRANSTON－ 1301 Reservoir Ave．， 942.6600 EAST PROVIDENCE－Shoppers＇Town， 434.5672

TEXAS

ARLINGTON－Collins at Park Row
ARLINGTON－Collins at Park Row
OALLAS－ 1601 Main St． $741-6279$
OALLAS－ 1601 Main St． $741-6279$
OALLAS－Medallion Center， 363.6236
OALLAS－Medallion Center，363－6236
OALLAS－ 125 Wynnewod Village． 948.3201
FORT WORTH－ 1515 So．Univ．Or． $335-4705$ FORT WORTH－ 900 East Berry St．， 927.7828 FORT WORTH－ 3524 East Oenton Highway， 831 －1951
HOUSTON－ 2315 Travis St．， $523-0871$ HOUSTON－ 322 Northline Mall， 697.7914 HOUSTON（Betlaire）－ 4759 Bissonnet
667.5190

SAN ANTONIO－Wonderland Ctr．，735－9161
WACO－ 1016 Austin Ave．， 752.7739
VIRGINIA
ARLINGTON－Washing ton Lee Shcp．Ctr．，
524－5422
WASHINGTON
SEATtLE－ 2028 Third Ave．，682．5280

FANTASTIC

RADJO SHACK - America's largest chain of 100% company-owned electronics shopping centers - offers a unique below-cost savings opportunity! With your order of $\$ 3$ or more, you get $\$ 6.95$ copy of "How to Build Electronics Equipment" . . . for just $\$ 1$ Bonus \#2: add only $50 \notin$ total for packing, shipping and postage, regardless of order size - anywhere in the United States.

$\square 50$ TUBULAR CAPACITORS: 100 mmf to 1 mf : to 600 WVDC. ± 27.1568 s $\square 150^{\circ}$ OF HOOK-UP WIRE: 6 folls of 25^{\prime} ach. $=18$ thru $\# 22$. $\# 27.025$
$\square 50$ ASSORTED CAPACITORS: including disc, ceramic, mylar, paper, etc. $=27.1199 \$$
$\square 50$ QUALITY CARBON RESISTORS: 100@? to 2 meg $2.12,1,2$ watts. $=27 \cdot 1563$

- 8 TRANSISTOR ELECTROLYTICS - 5 mid to 100 mfd. 8 RCA PLUGS \& JACKS: for phonos, uners, recorders etc =27.1575
\square \$25 ELECTRONIC SURPRISE PACKAGE esistors, diodes, condensers, $=27.1251 \$ 1$ I2-VOLT POWER SUPPLY KIT: for any low-voltage requirement. \#27-1220 $\square 4$ CK- 722 TYPE TRANSISTORS: perfect os adio amplifier. Inert case. $=27-1034 / 2$ $\square 10$ GERMANIUM DIODES: similar to N34, IN34A, IN60. $=27-821$
$\square 2$ IO.WATT POWER TRANSISTORS: PNP ype; TO. 3 case. $=27.833$
\square 40-WATT POWER TRANSISTOR: for power supplies, etc. Similar to 2 NI73
1200^{\prime} MYLAR TAPE/7" REEL!

ONLY 'REALISTIC' Lifetime TUBES ARE GUARANTEED FOR LIFE!

$24 K_{\text {Contacts }}^{\text {Gilat. Clad }}$

Tube Type	$\begin{aligned} & \text { Net Each } \\ & 1.55-\mathrm{Up} \end{aligned}$		$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Net } \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { Each } \\ & 5-U p \end{aligned}$
OZ4	1.39	1.19	$68 \cup 8$	1.99	1.79
183/			6BZ6	1.39	1.19
1G3GT	1.69	1.49	6СВ6A	1.39	1.19
$1 \times 2 \mathrm{~A} / \mathrm{B}$	1.99	1.79	6C68A	1.99	1.79
$3 \mathrm{BZ6}$	1.39	1.19	6 CM 7	1.69	1.49
$3 \mathrm{CB6}$	1.39	1.19	60Q6A/B	2.39	2.19
5 AM8	2.39	2.19	6EAS	1.99	1.79
SAQ5	1.39	1.19	6K6GT	1.69	1.49
$5 \cup 4 \mathrm{~GB}$	1.39	1.19	6SN7		
6AG5	1.69	1.49	GTB	1.69	1.49
6 AL 5	1.09	99	6T8A	1.99	1.79
6AM8A	1.99	1.79	6U8A	1.99	1.79
6AQ5A	1.39	1.19	6V6GTA	1.39	1.19
6AS5	1.69	1.49	6W4GT	1.39	1.19
6AU4/			6×4	. 99	79
GTA	2.39	2.19	6×8 A	1.99	1.79
6AU6A	1.39	1.19	12 AT 7	1.99	1.79
6AW8A	2.39	2.19	12AU7A	1.39	1.19
6AX4/			12AX4/		
GTB	1.69	1.49	GTB	1.69	1.49
6BA6	1.09	. 99	$12 \mathrm{~A} \times 7$	1.69	1.49
6BE6	1.39	1.19	12 BAG	. 99	. 79
6 BK 7 B	1.99	1.79	12 BE 6	1.09	. 99
68Q5	1.39	1.19	3525 GT	1.09	99
6BQ6GA/			50L5G T	1.69	1.49

300' MYLAR TAPE/3' REEL!

TRANSISTORIZED U.S.A.-MADE RUTO SALE

Radio Shack scooped up 3 trailer-loads of choice American transisterized auto radios at a price so "right" you save almost 50% off dealeps' net Frices! All brand new: all in factory eartons. They were made for '58-'62 U.S. sutos - but thrifty do-it-yourselfers can easily install em in any make ol year of car, truck or boat having statdard 12V negative ground. Geł 5 solid watts of power; 7 tuned circuits; automatic volume control! Chocse convenient pushbutton or manual taning They're complete with speaker and factory manual, ready to play.

MANUAL TUNE

cit Advt 38^{82}
peater net 38

19

PUSHBUTTON

Please send me the Tapes and/or Tubes indicated below:
Tapes
Tubes
Faks as checked \$
iubes $\$$
$\$$ - - -
Auto Radio Auto
$300 k$ 300k 1.00 Postage/Handling _. $50 c$ TOTAL ENCLOSED \$
\square Check \square Money Order \square Add to my Account.

Fill Out This Coupon - Mail at Once!
 COMMERCIAL TRADES INSTITUTE

1400 Greenleaf Avenue Depf. T-30 Chicago, Illinois 60626
YES! I want your FREE booklet, "You and Your Future in Television-Electronics," with New. Information on Color TV. I understand I will not be obligated in any way whatever. Address \qquad $-$
City \qquad State \qquad ip Code \square
Accredited Member National Home Siudy Council

that tells how you can MAKE BIG MONEY TN COLOR
TELEVSION

Hundreds of Good Jobs
Every month new thousands switch to color TV. Today there's a desperate need for repair and service men with skill to keep both black and white and color TV in action-
Right now there are thousands-literally thousands - of good jobs waiting to be filled.
Easy to Learn at Home in Your Spare Time
When you get your free booklet, you'll see how quickly and easily you can set yourself up in a high-paying job or a business of your own, either part-time or full-time. You set your own pace. Many students study as little as one hour a day! Some pay their whole tuition with cash they earn while training.
You Make Your Own Television Set
As an extra bonus, you end up with a TV set - one of the best that money can buy - all your own. Using the 20 valuable kits of parts and tools, you build a complete television set. Mail the Coupon Above at Once!
Color TV is booming. The growth that started slowly a few years ago is now in full swing. If you act now you can get in on the ground floor right at the beginning of television's biggest new growth surge. Send for the FREE BOOKLET at once. Mail the coupon above

COMMERCIAL TRADES INSTITUTE

1400 Greenleaf Ave., Chicago, III. 60626
MAIL COUPON AT TOP OF AD

JULIAN M. SIENKIEWICZ WA2CQL	Editor
WILLIAM HARTFORD KKD7432	Assuritfe Editor
ANTHONY MACCARRONE	Art birertor
JOSEPH DAVIS	Assisfunt Art Director
GREGORY CHISLOVSKY	Art Edilor
ALBERT DE QUERQUIS	Alt Assorinte
LINDA BRUCE	Art Assuriate
LEONARD F. PINTO	Production Lirector
ELLIOT S. KRANE	Ad'ertising Director
JIM CAPPELLO	Adrertising Manager
CARL BARTEE	Proturtian Manager
HELEN GOODSTEIN	Assixtant Production Mantiger
RONALD SMILEY	Promation Manager
FRANK A. TAGGART	Cover Art Director
JOSEPH DAFFRON	Errrutire Editor, s..1/ Hundbooks

President and Pullisher
B. G. DAVIS

Exenfive Vice President and Assistant Publisher JOEL DAVIS

Vice President and Editorial Director HERB LEAVY

RADIO-TV EXPERIMENTER, Vol. 18, No. 3 (17401, is published bi-monthly by SCIENCE \& MECHANICS PUBIISHING CO., a subsidiary of Davis Publications, Inc. Ediforial, business and subscription offices: 50.5 Park Ave., New York, N. Y, 10022. One-year subscription (six issues)$\$ 4.00$; two-year subscription (12 issues) - $\$ 7.00$; and three-year subscription 118 issues)- $\$ 10.00$. Add 75 c per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 505 Park Ave., PL-2-6200; Chicago: 520 N. Michigan Ave., $527-0330$; los Angeles: 6363 Wilshire Blvd., 653-5037; Atlanta: Pirnie \& Brown, 3108 Piedmont Rd., N.E., 404-233-6729; Detroit: Paul Pequinot, 357 Kendry Drive, Bloomfield Hills, Mich., 313-338-1922; Long Island: Len Osten, 9 Garden Street, Great Neck, N.Y., 516-487.3305; Southwestern advertising representative: Jim Wright, 4 N. Eight St., St. Lovis, CH 1.1965.

EDITORIAL CONTRIBUTIONS mus! be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for refurn or safety of manuscripts, art work, or photographs. Contributions should be addressed to the Editor, RadioTV Experimenter, 505 Park Avenue, New York, New York 10022.

Second class postage paid at New York, New York and at additional mailing office. Copyright 1965 by Science and Mechanics Publishing Co.

Print-through and sound brilliance

Put a magnet near a piece of iron and the iron will in turn become magnetized. That's printthrough. With sound recording tape, it's simply the transfer of magnetism radiating from the recorded signal to adjacent layers on the wound roll. Print-through shows up on playback as a series of pre- and post-echoes.

All agreed. Print-through is a problem. There are some steps you can take to minimize it. You can control the environment in which you keep your tapes, for example. Store them at moderate temperatures and at no more than 50% relative humidity. Also store them "tails out" and periodically take them out for "exercising" by winding and rewinding them. You can even interleave the layers with a non-magnetic material. Any volunteers? A better way is to start with a tape that doesn't print much ... which leads to low output problems if you don't make the oxide coating substantially more efficient.

And this is Kodak's solution. It's not simple, but it works. It starts with the selection of the iron oxide. In order to achieve low print-through, the oxide needles must have the proper crystalline structure. Kodak's oxide needles have that structure . . . offering the highest potential of any oxide currently available.

Milling the oxide ingredients also is very critical. If you mill for too long a time, the needles will be broken up and print-through will be drastically increased. Too short, and the dispersion will be lumpy. But other factors in the milling process are equally important. Like the speed at which the ball mill turns. It can't be rotated too fast, otherwise the
needles will be broken up, and broken needles, you know, exhibit horrible print-through behavior. If you rotate the mill too slowly, the oxide and other ingredients will not be blended

uniformly. Other factors such as temperature and the composition and viscosity of the ingredients must also be critically controlled. One more thing. You've got to make sure all the needles end up the same size ($.1 \times .8$ microns) .

A very important contributor to low print-through is the binder that holds the oxide particles in suspension. The chemical composition of a binder contributes nothing magnetically to a tape's print-through ratio. What a binder should do is completely coat each individual oxide needle, thus preventing the particles from making electrical contact. And that is just what our "R-type" binder does. The final step is to take this superb brew and coat it just the right way on the base.

Print-through tests are a million laughs. We record a series of tone bursts . . . saturation, of course. We then cook the tape for 4 hours at $65^{\circ} \mathrm{C}$. and then measure the amplitude of the
loudest pre- or post-echo. The spread between the basic signal and the print-through is called the signal-to-print-through ratio. The higher the number, the better the results. Most of the gen-eral-purpose tapes you'llfind have a ratio of $46-50 \mathrm{db}$. Low-print tapes average about 52 db . You can see from the graph that our general-purpose tape tests cut at 53 db ., so it functions as both a general-purpose tape and a lowprint tape-and at no extra cost. High-output tapes with their thicker coatings have pretty awful print-through ratios-generally below 46 db . Kodak's high-output tape (Type 34A) has something special here, too. A ratio of $49 \mathrm{db}-$ equal to most generalpurpose tapes.

Kodak Sound Recording Tapes are available at electrinic, camera, and department stcres.

FREE! New comprehensve booklet covers the entire field of tape performance. Entitled "Some Plain Talk from Kocak about Sound Recording Tape," it's free when you write Department 8, Eastman Kodak Co.npany, Rochester, N.Y. 14650.
© Eastman Kodak Co. MCM 1×1

EASTMAN KODAK COMPANY, Rochester, N. Y.

now there are 3 double duty sets

 time \& tool-savingNew PS88 all-screwdriver set rounds out Xcelite's popular, compact convertible tool set line. Handy midgets do double duty when slipped into remarkable hollow "piggyback" torque amplifier handle which provides the grip, reach and power of standard drivers. Each set in a slim, trim, see-thru plastic pocket case, also usable as bench stand.

PS 7
2 slot tip. 2 Phillips screwdrivers,
2 nutdrivers

10 color coded nutdrivers

XCELITE INC. - 64 BANK ST., ORCHARD PARK, N. Y. I
Please send free literature N563.

name

address

```
city
state \& zone
```

Pinking books for review is a difficult task for the of Bookworm. After all, what may be a complicated theory book for one reader of Radio-TV Experimenter may be a comic book for another reader. In this issue, your of Bookworm has singled 5 far out books for review that will reach into previously untouched corners of our readers' specialized interests. Read on, see if you agree with me.

Transistor Texts. John M. Carroll, the former Managing Editor of Electronics magazine (a McGraw-Hill business/technical publication) and presently Associate Professor of Industrial Engineering at Lehigh University, has compiled the best of transistor articles previously published in Electronics into three outstanding hard cover books. Only a brief synopsis of each text can be given in our limited space. More information on the texts can be had by writing directly to the publisher, McGraw-Hill Book Company, Dept. 740, 330 West 42 nd Street, New York, New York 10036.

234 pages Hard cover $\$ 10.00$

Transistor Circuits and ApplicationsHere is a thorough treatment of the transistor art, including a large number of typical circlits with component values and explanatory articles which deal with transistor structures, techniques, circuits, and equipment. The book provides circuit designers with a handy source of detailed information on how to
(Continued on page 10)

Your ticket to a good job in electronics.

These men will tell you how to get it!

Matt Stuczynski, Senior Transmitter Operator, Radio Station WBOE.
"The Commercial FCC License is a "must' for a career in broadcasting. I took ClE's Home Study Electronics Course and. thanks to their 'Auto-Programmed' teaching method, passed the Ist Class FCC License Exam on my first try! I now have a good job in studio operation, transmitting, proof of performance, equipment servicing."

Chuck Hawkins, Chief Radio Technician, Division 12, Ohio Dept. of Highways.
"My Cleveland Institute Course enabled me to pass hoth the 2nd and Ist Class License Exams on my firsr attempt. . . even though I'd had no other electronics training. I'm now in charge of Division Communications and we service 119 mobile units and six base stations. It's an interesting, challenging and extremely rewarding job.'

Glenn Horning, Local Equipment Supervisor, Western Reserve Telephone Company,
"1 owe my 2nd Class FCC License to C'eveland Institute. Their FCC License Program really teaches you theory and fundameutals ... is particularly strong on transistors, mobite radio, troubleshooting and math. Our Company has 10 other men enrolled zith CIE and it's going to help every one of them just like it helped me."

How about you? If lack of an FCC License is holding you back, it's time you looked into Cleveland Institute of Electronics Home Study. All you have to do is send us the coupon ... and in a few days, you'll have the complete story. And remember . . . Cleveland Institute backs their programs with this exclusive. money-back warranty: "A CIE License Course will quickly prepare you for a Commercial FCC License exam. If you complete the course but fail to pass the exam on your first attempt, CIE will refund all tuition."
Get started now. Send coupon for free booklet "How To Get an FCC License." There's no obligation.

Cleveland Institute of Electronics

1776 E. 17th St., Dept, EX-12 • Cleveland, Ohio 44114

BECOME A RADIO

Build 20 Radio and Electronic Circuits at Home

ALL GUARANTEED TO WORK!

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

Abstract

The "Edu-kit' offers you an outstanding PRACTICAL HOME RADIO COURSE at a rock-bottom price, Our $k i t$ is designed to train Radio \& Electronics Technciant, making use of the most modern methods of home training. You will learn radio theory. construc You w:ll learn how to build radios, using regular schematicsi how to wire and solder tn a professional manner: how to service radios. You will work with the wtandard type of punched metat chassis as well as the latest development of Printed circuit chasai.. RF and AF amplifiers and oscillators, detectors, rectifiers, test equipment. You witi learn and practict code, using the Progressive Code Oscillator. You will learn and practice trouble-zhooting, using the Progressive Signal Tracer, Progressive Signal Injector, Progrese . Square Wave Generator and the accompanying You will receive training for the Novice, Technician and General Classen of F.C.C. Radio Amateur Licunsrs. You will build Receiver, Transmitter, Square Wave Generator, Code Oscillator, Signal Tracer and Signal Injector circuits, and learn how to operate them. You Absolutely no previous knowledge of television, Hi-Fi and Electronica. product of many years of teaching and engineering experience. The "EdunKit" will the vide you with a basic education in Electronics and Radio, worth many times the complete

 THE KIT FOR EVERYONEYou do not need the slightest background ages and backgrounde have succeafully
in radio or science. Whether you are inter. used the "Edu-kit" in more than 7 coung ested in Radio δ Electronics because you tries of the world. The "IEdu-kit" has been want an interesting hobby, a well paying carefully designed, step by atep: so that the "Edu-kit," a worth-while investment, you cannot make a mistake. The Edu-kit

PROGRESSIVE TEACHING METHOD

The Progreative Radio "Edu-kit" is the foremost educational radio kit in the world, Kit" uses the modern educational principle of "Learn by Doing." Therefore you construct, gram designed to provide an easily-learned, thorough and interesting backgraund in radio. You begin hy examining the various radio parts of the "Edu-kit," You then learn the function, theory and wiring of these parta. Then you puild a simple radio. With thie firat set you will enjoy listening to regular broadcast stations, learn theory, practice testing and techniques. Gradually, in a progressive manner, and at your own rate, you will tind yourself constructing more advanced multi-tube radso circuits, and doing work like a profossional in the "Edu-Kit" courte, are Receiver, Tranamiter, Code Oncillator. Signal Tracer, Square Wave Generator and Signal Injector circuits. These are not unprofes professional wiring and soldering on metal chassis, plus, the new method of radio construccion known as "printed circuitry." These circuits operate on your reqular AC or DC house current.

THE "EDU-KIT" IS COMPLETE

You will recelve all parts and instructrons necessary to build 20 different radio and elecable, electrolytic, mica, ceramic and oaper dielectric condensers, resistors, tie strips, coils, hardware, tubing, punched metal chassis, Instruction Manuals, hook-up wire, solder, selenium rectifiers, volume controls ana switehes, etc. In addition, you receive Printed Circuit materials, including Printed circuit chassis, professional electric soldering iron, and a seif-powered Dynamic Radio and Electronics Tester. The "Edu-Kit" also includes code Instructions and the Progreasive Code Oacillator, in addition to F.C.C.-type Questions and Answers for Radio Amateur Licente training. You sive Siglial Injector, a High Fidelity Guide and a quiz Book. You receive Membership in Radio-TV club Free Consultation service, Certificate of Merit and Discount Privileges.

NOW! TRAIN AT HOME IN RADIO AND ELECTRONICS

ORDER DIRECT FROM AD USE COUPON ON NEXT PAGE REGEIVE FREE RADIO \& TV PARTS JAGKPOT

TECHNICIAN for of l $526^{\circ 3}$

 THE NEW IMPROVED DELUXE Progressive Radio "Edu-Kit" is now ready

SCHOOL INQUIRIES INVITED

Unconditional Money-Back Guarantee

The Progressive Radio "Edu-Kit" has been sold to many thousands of individuals, schools and organizations, public and private, throughout the world, It is recognized internationally as the ideal througho course
By popular demand, the Progressive Radio "Edu-Kit" is now available in Spanish as well as English.
It is understood and agreed that should the Progressive Radio
Edu-Kit" be returned to Progressive "Edu-Klts" inc. for any res. son whatever, the purchase price will be refunded in full, without quibble or question, and without delay,

The high recognition which Progressive "Edu-kits" Inc. has earned through its many years of service to the public is due to its unconditional insistence upon the maintenance of perfect engneering, the highest instructional standards, and 100% adherence to its Unconditional Money-Back Guarantee. As a result, we do not have a single dissatisfied customer throughout the entire world.

TRAINING ELECTRONICS TECHNICIANS SINCE 1946

FREE EXTRAS

- SET OF TOOLS
- soldering iron
- electronics tester
- pliers-cutters
- valuable discount card
- certificate of merit
- tester instruction manual
- high fidelity guide - quizzes
- television book - radio TROUBLESHOOTING BOOK
- MEMBERSHIP IN RADIO.TV C.UB: consultation service icc AMATEUR LICENSE TRAINING
- printed circuitry

You Will Find That The Progressive Radio "Edu-Kit" Is Perfect

- . FOR anyone who wishes to learn more about radio construction, theory and servicing.
- - FOR anyone who is looking for an interesting hobby.
FOR anyone who would like to learn radio but does not have time to attend regular school hours.
- - FOR anyone who wants to start studying for a high-paying radio job.
FOR anyone who wishes to start in Television.

PROGRESSIVE 'EDU-KITS'" INC.
(ATT: S. Goodman, M. S, in ED., Pres.)
1186 Brodaway, Dept. 529NN Hewlett, N. Y.

ADDRESS
CITY \qquad ZONE
If you have a friend interested in electronics sond his name and address for a FREE subscription also.

OLSON ELECTRONICS INCORPORATED

355 S. Forge Street Akron, Ohio 44308

BURNOUT-PROOF METER MOVEMENTS 5- PROFESSIONAL INSTRUMENTS

ONE YEAR Factory Guarantee
Up to 100,000 Ohms Per Volt Sensitivity Close Tolerance $\pm 2 \%$ Jeweled Movements Instrument Quality Multipliers \& Shunts
Packaged in Shock Proof Custom Cases Mirrored Meter Scales

Model M-330 (illust.) 30K Ohms Per Volt DC

$$
\$ 1995
$$

FOR COMPLETE DETAILS see your Distributor or write Dept. RE1

I.T.I. CORPORATION
 KEW GARDENS,
 NEW YORK

BOOKMARK

(Continued from page 6)

apply transistors in military, industrial, and home-entertainment equipment. It covers typical transistor operating characteristics, important circuit parameters, transistor types, problems of temperature and gain stabilization, and a large number of typical transistor circuits, including newest transistor radios. Circuits are shown with actual component values and include those used in portable and automobile radios, audio amplifiers, military communications equipment, telemeters, servo amplifiers, computers, industrial and medical instruments, and hearing aids. Operating characteristics of over 200 commercially available transistors, representing all types, are listed.
\square Modern Transistor Circuits-Here is a comprehensive collection of modern transistor circuits, classified and arranged for easy reference. Almost 200 circuits are presented, with complete design information and electronic component values. The circuits are arranged both by generic types such as amplifiers, oscillators, power supplies, and pulse circuits, as well as by specialized applications such as broadcast equipment and home entertainment; audio and RF communications circuits; missile, aircraft, and satellite

283 pages Hard cover $\$ 10.00$
telemetering equipment; test instruments; and industrial, scientific, and medical devices. Emphasis is given to new circuits combining transistors and electron tubes, and transistors and magnetic amplifiers. There are over 200 schematic diagrams, along with important block diagrams, performance curves and
(Continued on page 14)

SOMEONE SHOULD DEVELOP AN EASY WAY

TO LEARN ELECTRONICS AT HOME

RCA INSTITUTES DID!

RCA introduces new CAREER PROGRAMS -beginning with the student-proved "AUTOTEXT" Programmed Instruction Method-the faster, easier way to learn. You start to learn the field of your choice immediately. No previous training or experience needed.

Pick the career of your choice- and RCA Institutes will do the rest! RCA's new, revolutionary "Career Programs" help you go directly to the career you want! You waste no time learning things you'll never use on your job! Each Career Program is designed to get you into the kind of job you want in the fastest, easiest possible way!

SEPARATE COURSES

In addition, in order to meet specific needs, RCA Institutes offers a wide variety of separate courses which may be taken independently of the above Career Programs, on all subjects from Electronics Fundamentals to Computer ProgrammingComplete information about thesc courses will be sent with your other mate:ials.
the most trusted name in electronics

CHOOSE A CAREER PROGRAM NOW
your first step to the job of your choice!

- Television Servicing
- Telecommunications
- FCC License Preparation
- Automation Electronics
- Automatic Controls
- Digital Techniques
- Industrial Electronics
- Nuclear Instrumentation
- Solid State Electronics
- Electronics Drafting

RCA INSTITUTES BONUS EXTRAS
Only RCA Institutes offers you a Liberal Tuition Plan, one of the most economical ways to learn. Plus, you get top quatity equipment in all kits furnished to you with your courses - yours to keep and use on the job. And now, RCA's NEW PRO. GRAMMED ELECTRONIC BREADBOARD GIVES YOU LIMITLESS EXPERIMENTA. TION - scientific laboratory procedures right in your own home! You build a working signal generator, AM Receiver, Multi- I meter, Oscilloscope, and other valuable
equipment - all as a part of your course! Get the facts today!
Classroom Training Also Available. Day and Evening Classes are available to you in New York City at RCA Institutes Resident School. You may be admitted without any previous technical training; prep courses are available if yoù haveri't completed high school. Coeducational classes start four times a year.
SEND COUPON TODAY FOR COMPLETE INFORMATION. CHECK HOME STUDY OR CLASSROOM TRAINING.
RCA INSTITUTES, INc., Rx. 65
A Service of the Radio Corporation of America 350 West 4th St., New York City 10014
RCA 350 west 4th St. New Yot 6 Y 10014
Please rush me FREE illustrated book with informa- I tion checked below. No obligation. No salesman will call.
Home Study $\square \quad$ Classroom Tr sining \square Age I Name__....Age__I I City________ I
I CANADIANS: Take advantage of these same RCA In- I I stitutes courses at no additional cost. No postage, I no customs, no delay. Fill out coupon anc send in I envelope to: RCA Victor Ltd,, 5581 Royalmcunt Ave., I
Montreal 9, Quebec.

13 HEATHKIT VALUES... SEE THE

Deluxe $21^{\prime \prime}$ All-Channel Hi-Fi Color TV
Only color TV you can build . . . only color TV you can adjust \& maintain yourself with exclusive "builtin service center" . . . only color TV you can install 3 ways-wall, custom cabinet, or either Heath factorybuilt cabinet. Tunes all channels, 2 thru 83 to bring you $21^{\prime \prime}$ of true-to-life color and black \& white pictures, plus hi-fi sound. All critical circuits prebuilt \& aligned . assembles in just 25 hours! Kit GR- 53 A, chassis tubes, uners, speaker. 127 lbs
$\$ 399.00$
GRA-53-7, deluxe walnut cabinet, 85 ibs.... $\$ 115.00$ GRA-53-6, walmu-finished cabinet, $52 \mathrm{lbs} \$ 49.00$

Deluxe Heathkit/Thomas

"Coronado" All-Transistor Organ
Saves up to $\$ 400$.. Easy to build \& play... No extras to buy! Features 17 true organ voices; 28 notes of chimes; built-in 2 -speed rotating Leslie, plus 2 -unit main speaker systems; two full-size 44 -note keyboards; reverb; attack, sustain \& repeat percussion (the only organ to give, you all 3); stereo chorus control for exciting "stereo" effects: 75-watt peak music power amplifier; and hand-crafted, hand-rubbed walnut cabinet \& bench. Hear it yourself-Send 50 c for demonstration record GDA-983-2, $7^{\prime \prime}, 33^{1 / 3} \mathrm{rpm}$. Organ wt... 242 lbs . Also available, low-cost Heathkit/Thomas "Largo," organ only, 158 lbs.
$\$ 349.00$

Low-Cost 40-Watt
Transistor Stereo Amplifier
Produces full 66 watts IHF music power AA-22 at ± 1 db from 15 to 30,000 sps. Quick, 80195
clean "transistor sound: 5 stereo inputs.
Walnut cabinet 23 lb . Matching Al. Walnut cabinet. 23 lb :. Matching AJ33A AM/FM/FM Stereo Tuner $\$ 99.95$.

Deluxe 7 ()-Watt
Transistor Stereo Amplifier
Enjoy cool, instant operation, long life, aA-24c and matural "transistor sound." Enjoy
100 watts IHF music power at ± 1 db 495 from 13 to $25,000 \mathrm{cps}$. Walnut cabinet. 29 lbs. Matching AJ-43C AM/FM/FM Stereo tuner $\$ 129.95$.

Heathkit Walkie-Talkies!

(A) 1-Watt GW-52 . : up to 3 -mile operation; 10transistor, 2 -diode circuit: $\$ 20$ rechargeable battery; metal case: specify channel; pair $\$ 139.95$, each $\$ 74.95$.
(B) 9-Transistor GW-21 up to 1-mile operation; crystal-controlled transmit \& superhet receive; metal case; specify channel; pair $\$ 74.95$, each $\$ 39.95$.
(C) 4-Transistor GW-31 $1 / 4$ mile operation or more; no license, tests, age timit; fits in pocket; metal case; specify channel; pair $\$ 35$, each $\$ 19.95$.

OTHER 237 IN FREE CATALOG!

New! Heathkit Shortwave Radio!

 Covers 550 kc to 30 mc -includes AM plus 3 shortwave bands; $5^{\prime \prime}$ speaker; lighted bandspread tuning dial, relative strenght indicator \& $7^{\prime \prime}$ slide-rule dial; BFO; 4-tube circuit plus 2 rectifiers: "low-boy" metal cabinet; 13 lbs.

Deluse
Single Sideband Amateur Receiver! Covers 80 thru 10 meter bands with all S8.300 crystals furnished, plus provisions for
VHF. I ke dial calibrations-100 kc per $\$$ \&00 dial revolution. Tuning dial to knob ratio approx. 4 to 1 . Less speaker. 22 lbs . Matching ransmitter \& KW linear amplifier also available.

Heathkit Vacuum Tube Voltmeter
Single AC/Ohms/DC probe: $7 \mathrm{AC} / \mathrm{DC} / \mathrm{Ohm}$ ranges; 1 a precision resistors for high accuracy: frequency retponse +1 db from 25 eps 101 mc: voltage doubler rectifie:: simple circuii board construclion; 5 lbs. Available wired, IMW-11, at $\$ 39.95$.

s895

Deluxe 5-Channel CB Transeciver!

Features 5 crystal-controlled transmit \& reccive channels; new front-panel crystal socket to charge transmit crystal of one channel; new spoting swith; new TVI filter: new calibrated " S " meter; 3-way power supply for fixed or mobile operation; mstal cabinet: 19 lbs.
NEW! NELI Torque Fire . Only All Silicon Electronic Ignition System!
Not a kit . . . installs in just 5 minutes! Cannot be damaged by improper installation. Provides fewer tune-ups, longer plug life, greater gas economy, instant starts in all weather. Transfer from car to car present system is left intact. Operates on 6, 12, or 24 v . DC, pos. or neg. gnd. . . any car or truck.
 3 lbs .

NEW!

Deluxe All-Transistor AM Porsable! gr-24 6 transistor. 2-diode circuit gives 8 transistor performance. Uses standard flashlight batteries ...requires only $1 / 10$ operating cost of pocket-size portables. KF stage \& double-tuned I.F. stage for greater sensitivity \& selectivity. Buikin $1 / 2^{\prime \prime}$ dia. rod antenna, $4^{\prime \prime} \times-6^{\prime \prime}$ speaker, vernier tuming. slide-rule dial, \& black simulated leather
 case. 6 lbs.

FREE CATALOG

See these \& over 250 other Heathkirs. Save up to 50% by doing the easy assembly yourself. Send for your free copy iodor.

HEATH COMPANY, Dept. 19.6
Benton Harbor, Michigan 49023
In Conada: Daystrom, Lid. Cooksville, Ontario
Enclosed is \$ \qquad plus pastage. Placise senc modell.
\square Please send my Free 1965 Heathkit Catalog.

Name (Please Printl
Address.
-
City
Prices \& specifications subject to change without nofice

BOOKMARK

(Continurd frompage 10)

waveforms, and photographs illustrating construction of equipment. You can get immediate benefit from this book by using its circuits and data directly to design similar devices. It is based on more than 100 recent engineering articles in Electronics.

\square Design Manual for Transistor Circtuits-

 This comprehensive manual presents a collection of tested transistor circuits which design engineers may adapt to a variety of individual applications. In nearly all cases, all component values are given, and the transistors used are commercially available. Fundamentals of semiconductor devices and network applications are reviewed in the first chapter along with semiconductor materials, forward and reverse $p-n$ junctions, transistor action, transistor load lines, hybrid matrix parameters, equivalent-T circuit, high-frequency transistors, and power transistors. Special devices are also included such as

381 pages Hard cover $\$ 10.00$
unijunction transistors, controlled rectifiers, thyristers, unipolar transistors, and integrated semiconductor circuits. The material-dealing with basic circuits such as amplifiers, oscillators, and power supplies-has been grouped into 21 chapters for easy reference. They cover such specific applications as radio, f-m, and television receivers; test instruments; industrial and radiation measuring instruments; and computer circuits. Missile and satellite circuit information has been divided into two chapters for easy comprehension. One is devoted to telemetering circuits and the other to guidance circuits. Similarly, digital computing circuit informa-
tion is separated into one chapter on counting circuits and three chapters on computer applications. These latter chapters cover such material as switching and control circuits, memory circuits, and circuits for input and output devices. The field of industrial electronics is covered in chapters on solid-state switching, servomechanisms, and measuring instruments. The new tunnel diode is covered in an article describing the theory of the device, typical circuits, and applications. Design charts and nomographs have been reproduced to illustrate material covered. Typical problems dealing with operation, thermal design, and transistor operating loads are discussed and analyzed. The basic information, the scope of material covered, the ease of comprehension and reference, combine to make this manual equally suited to the engineer approaching the subject for the first time and to the experienced engineer searching out specific circuits for particular applications.

Out In The Light. A new hobbiest manual, Solar Cells and Photocells by Stu Hoberman, has been placed on the bookshelves by publishers Howard W. Sams \& Co., Inc. Solar cells and photocells are being used extensively in all types of modern devices-from elec-
$0 \mathrm{D}-\mathrm{C}$
SOLAR CELL \& PHOTOCELL

tronic door openers to solar batteries in space vehicles. The basic objective of this book is to demonstrate the theory, application, and construction of light-sensitive devices. Chapter 1 discusses the basic principles of lightsensitive devices and light sources, or illuminators. The electrical characteristics and the symbols for these devices, as well as application data are given. Chapter 2 describes the various types of light beams employed and some typical applications of photoelectric controls in industry. The easy-to-build, low-cost projects presented in Chapter 3 are designed for students, experiment-

YOUR NEW COPY IS WAITING

FREE! For fun and pride in assembly, for long years of pleasure and performance, for new aćventures in creative electronics mail the coupon below and get Conar's brand new catalog of quality do-it-yourself and assembled kits and equipment. Read about items from TV set kits to transistor radios . . . from VTVM's to scopes ... from tube testers to tools. And every item in the Conar catalog is backed by a no-nonsense, no-loopholes, money-back guarantee! See for yourself why Conar, a division of National Rad:o Institute, is about the fastest growing entry in the quality kit and
 equipment business.

BOOKMARK

ers, and technicians. These projects range from the simple to the more complex-from light switches, photorelay drivers, and light meters to photologic circuits, remote controls, color comparators, etc. By constructing the projects presented in this book, you can acquire a greater insight into both the theory and operation of solar cells and photocells. (For more information write to Howard W. Sams \& Co. Inc., Box RTE, 4300 West 62nd Street, Indianapolis 6, Indiana.)

Surplus. The past two decades have seen such national institutions as the hula hoop, N. Y. football Giants and the Edsel come into being and then sink into oblivion. There

> 192 pages
> Soft cover $\$ 3.00$
are only two things left from the past, Ed Sullivan and military surplus radio year. Surplus prices aren't too different than they were after the war. You can still buy ARC-5 and 274 N transmitters and receivers for under ten dollars. But the bargain is not a bargain unless you know how to convert them to peace-time use. Author Tom Kneitel's new book, Surplus Conversion Hand-
hook, is a neat packaging job of old magazine articles detailing all that is needed to convert many of the surplus items still on the market place. We can't hope to list all the conversions in this book, but we can list a few of the equipments by military number: ARC-1, 3, 4, 5, 36, 49; BC-191, 224, 312, $314,342,344,348,375,603,624,625$, 779, 794, 1004, 1068A; Command transmitters and receivers; HQ-120, 129X; SCR177, 188, 193, 399, 499, 508, 522, 528, 542, 608, 628; SP-200, 210, 400; and military crystals. (For more information write to Cowan Publishing Corp. Dept. TK-1, 14 Vanderventer Ave., Port Washington, New York.)
Master Index. Mr. M. M. Beitman of Su preme Publications has just announced the availability of the new 1964 Master Index to Supreme Publications. This booklet serves as an index to all 23 radio volumes and 17 TV volumes presently available. If you are interested in obtaining information and the schematic diagram for any U. S. radio made since 1926, or any U. S. TV set manufactured since 1951, this index becomes invaluable. As a special offer to Radio-TV Experimenter readers, Mr. Beitman offers single copies of the Index for only 10ϕ to cover actual postage. Send your order and 10¢ to Supreme Publications, Box 7061760 Balsam Road, Highland Park, Illinois. This offer can be withdrawn at any time.

Speak Up, Bud! Your ol' Bookworm would like to know what books you have been reading during the first six months of 1965. Your reading habits will help me plan my reviews to coincide with your reading objectives. Don't be bashful, send a postal card to the Ol' Bookworm in care of Radio TV-Experimenter and list the books you've read. OK to mention other magazines, if you wish.

NEW producls

Lightweight Extended-Range Stereo/Mono Headset

A new headset, Model AKG K-50, designed especially for stereo/mono music listening has been introduced to the high fidelity market by Audio Applications. The new headset features unusually lightweight construction totalling a mere 3.8 ounces, compactness and wide-range frequency response of 20 cps to more than $25,000 \mathrm{cps}$ with extraordinarily low distortion. The manufacturer claims the AKG K-50 headset is the only unit that provides full bass response without requiring an air seal between the listener's ears and the earphones. This combined with the extremely low weight completely eliminates fatigue and discomfort. The AKG K-50 headset can be worn for many hours without inducing "head clamp" sensations or self-consciousness. It is exceptionally efficient, normally requiring a power level of only 156 milliwatts for comfortable sound. The headset is finished with crystal-clear earcups and light gray bail and drive capsules that are easily adjusted on the unobtrusive headband. Mechanical construction is such that long, trouble free life is assured. A 1-year unconditional guarantee is given for materials and workmanship by Audio Applications, Inc., national sales and service representatives for

EXCLUSIVE FRANCHISE

Amazing new liquid plastic coating used on all types of surfaces interior or exterior. Elimirates waxing when applied on Asphalt Tile, Vinyl, Linoleum, Vinyl Asbestos, Hard Wood, and Furni-ure. Completely eliminates painting when applied to Wood, Metal, or Concrete surfaces. This finish is also recommended for boats and automobiles.

NO COMPETITION

As these are exclusive formulas in demand by all businesses, industry and homes. No franchise fee. Minimum investment- $\$ 300$. Maximum invest-ment- $\$ 7,000$. Investment is secured by inventory. Factory trained personnel will help set up your business.
For complete details and descriptive literature uvite:

CHEM-PLASTICS \& PAINT CORP.

1828 Locust
St. Louis 3, Mo.

You can earn an A.S.E.E. degree at home, College level FiDME N'TUDY courses taught so you can un lerstand them. Coninue your education, earn more in the highly paid electronics industry, Missiles, computers, transistors, altomation. complete electranics. at our Chicago campus-Founded 1934. Send for free catalog.
American Institute of Engineering \& Technalogy 1139E. West Fullerton Parkway Chicago 14, III.

FOR COLORFUL COMPARATOR GUIDE ABOUT
 automatic TURNTABLES mail the handy
coupon below Coarrarid, Dept. GF-1865,
Port Washington, N.Y.
Please send Comparator Gulde

NAME

CTVY \qquad STATE \qquad

STUDY TO BE A DOCTOR

 of Psychology or MetaphysicsObtain a Ps.D., Ms.D., D.D., or Ph.D. Be a Teacher, Lecturer or Practitioner. Teach others how to achieve Health, Happlness and Contentment. Chartered by State. Correspcndence courses only. Write for FREE booklet telling how.

THE NEOTARIAN FELLOWSHIP

Desk RT 206 Waldo Center Bldg. Kansas City 14, Missourt

[^2]

AUDIO ACCESSORY SELF-SERVICE CENTER
At last! All the confusion and "wait" gone. Fail-Safe quality. Packages factory sealed, precisely labeled by name, type, mating part, price. Guaranteed.
Send for Complete Catalog:
SWITCHCRAFT, INCORPORATED
5579 No. Elston Ave., Chicago, Illinois 60630

FREE! NEW CAREER GUIDE TO Success in ELECTRONICS

Automation, Math-Basic or Advanced Whie cholec of new Home study Programa to prepare you for well paying career or ice, Broudcasting, Induatrial Autometion We assist you in choosing best progran save time and money. Tuition refund surety. since 1931 . Write today-
CENTRAL TECHNICAL INSTITUTE
Dept. 12065, 1644 Wyandotte St. - Kansas City, Mo. 64108
ELECTROSTATIC GENERATORS
 NOW - 4 Models - 150,000 250,000 and 400,000 VOLTS PLUS NEW SUB-MINIATURE Complete Kits
I50,000 VOLT MODEL......\$27.95 PP. 250,000 VOLT MODEL..... 32.95 PP. Also Plastic Materials for:
 - WOUPED UP TLESLA COIL. - TUREO GENERATGR MACH... - OPAQUE PNOJECTOR 20.00
4.25
4.50 - WMLSON CLOUD CHA ABEBR..... 9.50 - SUB-MIN. GENELATOR … 3.95 \& 4.95 - Vaculm chaibili kit..9.00 \& 11.50 FOREST PRODUCTS, INC. Dept. RT-49

145 Portland Strest
Canbridue, Massachusetis

NEW proderrls

the AKG K-50 headset. The unit is available at many local retail outlets for $\$ 22.50$. (For more information and the location of your local dealer write to Audio Applications, Inc., Dept. RT3I, 19 Grand A venue, Englewood, New Jersey 07631.)

Solid-State Integrated Amp

Latest in the Harman-Kardon line of solid-state high fidelity components is the Model SA-2000 integrated stereo amplifier. This all-transistor unit provides 36 watts IHF music power output (18 watts per channel). The SA-2000 utilizes no output transformer, it is able to reproduce faithfully all frequencies from 8 to $25,000 \mathrm{cps}$, with a flat response within $\pm 1 \mathrm{db}$ at normal listening levels (I watt). At full rated power, the unit reproduces 10 to $23,000 \mathrm{cps}$ with a flatness of $\pm 1 \mathrm{db}$. The intimate direct speaker coupling is said to enable the speaker to follow the signal more closely and to provide better speaker damping. The damping factor is 25:1. Square wave rise time is only 5 microseconds. This excellent transient response prevents blending of instrument voices, enabling the discriminating listener to pick out individual instruments. Harmonic distortion is less than 1% and hum and noise suppression is at least 90 db . Controls include the following: volume control with power switch; balance control; ganged bass, and treble controls; contour switch; low cut switch; high cut switch; tape monitor switch; and speaker defeat switch. The SA-2000 features a front panel earphone receptacle,

two convenience outlets, a phono input, a tape amplifier input and two auxiliary inputs. It measures $131 / 4^{\prime \prime}$ wide $\times 43 / 8^{\prime \prime}$ high $\times 83 / 4^{\prime \prime}$ deep and weighs nine pounds. list price is $\$ 159.00$. (Complete specs are yours for the
asking. Write to Harman-Kardon, Inc., a subsidiary of The Jerrold Corporation, Dept. 740, 15th and Lehigh Avenue, Philadelphia 32, Pa.)

CB Transceiver

Sonar Radio Corporation has come up with their newest CB unit-the FS-23-which incorporates every functional feature demanded by today's experienced CB'ers including frequency-synthesizing circuits. The unit's continuous one control channel switching and low-noise Nuvistor receiver RF stage

offer are just two of the many features necessary for full-time CB communications. The Sonar FS-23 uses 13 tubes, 2 silicon diodes, 1 germanium diode and 12 hermetically sealed crystals to perform in 19 stages aside from the power supply which uses 2 power transistors and 4 silicon rectifiers. The oscillators are of the fundamental frequency type as opposed to the overtone type and provide a higher degree of transceiver stability under all operating conditions. The receiver combination of a low-noise Nuvistor RF amplifier. selective IF system, gated noise-limiter, double conversion and voiceoriented audio system provides unparalleled reception in both mobile and base installations. The transmitter incorporates the best time-honored design techniques and is modulated to 100% by a class B push-pull modulator. The result is a clear penetrating signal ideal for crowded, noisy conditions. The Sonor FS-23 comes complete with microphone, power supply cables and under-dash mounting brackets; priced at $\$ 299.95$. (For more information write to Sonar Radio Corp., Depi. 731, 73 Wortman Avenue, Brooklyn, New York.)

VTVM Measures L \& C

The new EMC Model 107A, a wide-range vacuum-tube voltmeter (VTVM) for DC, AC , and resistance measurements, also pro-
 Watch

New Drop Ship Plan offers you first day profits! Deal direct with overseas sources at prices shown. Dazzling bargains with Derringer no investment. Full or spare time. Pistol $\$ 5.74$ Write for FREE BOOK today to . MELLINGER, 1554 S.Sepulveda,Depl P1186 LosAngeles 25
ASSEMBLE THIS ALL BAND BATIERY SHODT WAVE BADIO FOF $\$ 9.95$.
 LISTEN AROUND THE WORLD-LIP TC 12 , OOO MILES AWAY! Ships. Aircraft, Vo.ce of
Anerica Russia. London, Australti. Amateur. Citizens. Police - Also USA Broadeast. WAYE BANMS. 1 To 40 MC . Catibrated tun WHOLE WORI. D TA, KING DAY OR N:GHJ
SEND ONLY $\$ 2.00$ (eash, ck, mo.) and pay postman \$7.95 CoD postage or send 59.95
for phow. delivery Complete Basic kit as shown. Free Broadcast Colt and Fiastle Case
If you order, now. Avilitle mity ficm
Western Radio, Dept BRE-6, Kearney, Mebr Western Radio, Dept BRE-6, Kearney, Nebr

NEW products

vides direct peak-to-peak readings on complex, asymmetrical voltage waveforms, direct capacitance readings, a zero-center scale, db scales, and indirect inductance measurement. Other features include a "wide screen" 6 -inch meter faceplate for legibility and reading accuracy. This accuracy is furthered by 10 separately calibrated scales instead of combination scales. In addition to the capacitor test, the function switch includes separate positions for + or - DC. The meter movement is burnout-proof. Peak-topeak voltage is measured in 6 ranges: 0 to 4 , $28,84,280,840$ and 2800 volts. AC (rms) and DC, in 6 ranges: 0 to $1.5,10,30,100$, 300 , and 1000 volts (up to 30,000 DC volts with accessory probe). Six resistance ranges cover from 0 to 1000 ohms (10 ohms center scale) up to 0 to 1000 megohms. Capaci' tance is measured in 6 ranges from 50 pf . to 5000 mf . Db is measured from -24 to +55 db in 6 ranges. Accuracy is 3 per cent on DC, 4 per cent on AC. Input resistance

is 16.5 megohms or $12 / 3$ megohms per volt on DC, 1.5 megohms on AC. A complete instruction manual for the EMC Model 107A VTVM includes conversion charts to obtain inductance readings in henrys and correct db readings for standards other than 0 db at 6 mw . in a 500 -ohm line. Available accessories include an RF probe useful to 200 mc . and a high-voltage probe useful to 30 kv . Model 107A comes with instruction manual and test leads; in kit form, $\$ 36.50$, or wired and tested, $\$ 51.40$. (Complete information is yours for the asking-write to Electronic Measurements Corporation, 625 Broadway, New York, N. Y. 10012.)

Hully-Gully To Fox Trot It's Áll On One Tape

A new album exclusively dance music called "Tapeotique" has been announced a vailable by Roberts Electronics. Tapeotique is a compelling collection of current dance hits termed 'Long Play' for its length in excess of 3 hours. Music of Tapeotique is programmed 4-track stereo. Dancers find it difficult to resist its selections following in close sequence. No matter what your favorite dance is, it's on this tape-Swim, Watusi, Frug, Bossa-Nova, Cha-Cha, Merengue, Samba, Twist, Hully-Gully and many others. Tape speed is $33 / 4 \mathrm{ips}$. with extraordinary fidelity for this speed. Sound reproduction is by Roberts Cross Field Sound, a process`successful in delivering exceptional fidelity even at $17 / 8 \mathrm{ips}$. Tapeotique is available from Roberts dealers who also handle the Roherts tape recorder line. It retails for $\$ 14.95$. Dance tunes on this tape would cost $\$ 60$ purchased as separate tapes. Tapeotique is also available as halftrack monaural at $33 / 4 \mathrm{ips}$. on special order. (For more information write to Roberts Electronics, Division of Rheem Mfg. Co., 5922 Bowcroft St., Los Angeles, Calif.)

Electronic Exposure Meter Kit

Allied Radio has come up with an electronic exposure meter kit which is so sensitive that it will get the right exposure even by moonlight. The Knight-Kit KG-275 meter uses a cadmium sulfide photocell, powered by two 1.35 -volt mercury batteries. The unit will read light down to 0.014 footcandles. It reads reflected light from the subject, has built-in diffuser for incident light readings and push-
button range selectors for low and high light levels. Color-coded scales indicate proper lens openings and shutter speed combinations. Push-to-test button on back of case acts as built-in battery tester. Size is $41 / 4 \mathrm{x}$ $21 / 4 \times 13 / 8^{\prime \prime}$-small enough to fit in the palm of the hand. The complete kit (assembly time 1 to 2 hours) is supplied with all parts,

case, batteries, neck cord, wire, solder and step-by-step instructions for $\$ 15.88$. (It is listed in the Allied Radio 1965 catalog, available free on request from Allied Radio Corp., Dept. RTV3, 100 N. Western Avenue, Chicago 80, Illinois.)

Press-On Label Holders For Fast Filing And Finding

New self-adhesive press-on label holders are being introduced by Akro-Mils, Inc. to solve labeling, inventory control information, and indexing problems in a wide variety of applications for both industry and the hobbyist workbench. Made of durable extruded plastic, the pressure sensitive label holders are easy to apply and hold fast. Easy to change perforated insert cards supplied with the holders. The press-on label holders are ideal for file drawers, shelves, parts bins, ring binders and ledgers, all kinds of office books, with a wide market in stores, stockrooms, factories, hotels, hospitals, schools, mailrooms and libraries. Holders are easy to apply, simply by removing the treated paper backing and placing the press-on label hold-

TRANSISTORIZED CONVERTER 26-200 MC

Receive signals from 26 to 200 MC (1 MC spread), on broadcast band using car -adio, crystal control or tuneable (1 MC spread). KIT $\$ 11.00 \mathrm{pp}$. WIRED $\$ 20.00 \mathrm{pp}$.
WEBBER LABS 40-B MORRIS ST. LYNN, MASS.

FISHERMEN: WANT ACTION?

There's plenty of it in FISHERMAN. Every issue brings firsthand stories by pros; where to land the big ones, what waters to fish-and when. All your questions are answered in FISHERMAN. The Summer Edition is now on sale at all newsstands.
If you are a fisherman, buy FISHERMAN. A subscription costs only $\$ 3$ per year. Start your copies coming TODAY!

MAIL THE COUPON

HEW
products

er in position. Holder sticks permanently on any clean, smooth dry surface. Perforated insert cards, in sheets, fit easily in typewriter or can be marked by hand. Cards slide easily in the holder channel, and can be changed quickly. PRESS-ON Label holders are marketed by Akro-Mils in packages of 50 , in two sizes: $3 / 4^{\prime \prime} \times 2$ " $(\$ 2.00)$, and $1 / 2^{\prime \prime} \times 11 / 3^{\prime \prime}$ ($\$ 1.50$), with 50 perforated label cards included in each package. (For complete details and price lists, write Dept. 40RT, Akro-Mils, Box 989, Akron, Ohio 44309).

CB Accessories

Lafayette Radio has come up with two new additions to their expanding line of Citizens Band Accessories-The "QuietCom" Solid State Vibrator replacement (No. $42-0121$ for negative ground and No. 420122 for positive ground) and a CB Low Pass Filter, (No. 42-0123). They cost $\$ 5.95$ each. The Lafayette Quiet-Com is an efficient solid state replacement for an existing 12 volt CB, Amateur or mobile communications vibrators rated up to 85 -watt power consumption. Features elimination of vibrator hash noise, longer life and cooler operation. The Lafayette Low Pass Filter is designed to effectively reduce TVI which may emanate from CB transmitters. It attenuates radiated spurious and other undesirable harmonic signals higher than 50 megacycles approximately 50 db . Two builtin SO-239 connectors for simple installation in coax lines. Impedance 50-75 ohms (reversible. Size: $5 \times 2 \times 13 / 4$. (For more information and catalog, write to Lafayette Radio Electronics Corporation Dept. 470, 111 Jericho Turnpike, Syosset, L. I., N. Y.)

[^3] RADIO-TV EXPERIMENTER and issue date.

By Leo G. Sands

Radio-TV Experimenter brings the knowhow of electronics experts to its readers. If you have any questions to ask of this readerservice column, just type it on the back of a 4h postal card and send it to "Ask Me Another," Radio-TV Experimenter, 505 Park Avenue, New York, New York 10022. The experts will try to answer your questions'in the available space in upcoming issues. Sorry, the experts will be unable to answer your questions by mail.

Neon Relaxes

How can I determine the frequency of a neon lamp relaxation oscillator? It is not $t=R C$ because different voltages produce different frequencies.
-E. S., Springfield, Ore.
The time constant of the circuit shown in the diagram, without the neon lamp, is equal to R in megohms times C in microfarads. If R is set to one megohm and C has a value of one microfarad, it will require one second for C to charge to 63% of the supply voltage.

When the neon lamp is in the circuit, the supply voltage and the lamp characteristics have an effect on the period of the circuit. Suppose the neon lamp fires at 100 volts and extinguishes at 70 volts. If the supply potential (B) is 200 volts, C will not charge to 63 per cent of the supply voltage (126 volts) because the neon lamp will fire when the

NTififitill II HIECTRONICS?

Buy ELEMENTARY ELECTRONICS at your newsstanc today. For only 75 ל̧, you can learn how to read a slide rule, a schematic, build low-cost equipment. For fun, try the Winky-Dink, a one-hour project.
A subscription to ELEMENTARY ELECTRONICS will bring a wide selection of electronics information to your home.

MAIL THE COUPON TODAY

 Please start my subscription to Elementary Electronics immediately.name
address
city
state
zip codeI enclose \$3 Bill me

ELEMENTARY ELECTRONICS
 505 Park Avenue New York, N. Y. 10022

ASK ME another

charge in C reaches 100 volts, which it does in about half the time required to reach 126 volts.

When the lamp fires, the capacitor discharges through it, but the charge only drops to 70 volts since the lamp goes out at this point. Then, the cycle starts again, the charge in C rising exponentially from 70 volts (not from zero) to 100 volts and then dropping abrutply to 70 volts.

There are fairly complex equations for calculating the frequency of a neon lamp relaxation oscillator which are applicable when the characteristics of the lamp are known and the voltage source is stable. The easiest way is cut and try. It is extremely important for the voltage source to have excellent regulation in order to achieve frequency stability.

Local Oscillator Kaput!

My 5-tube AC-DC superheterodyne receiver will bring in stations near one end of the dial. The rest of the band is dead. What is the trouble?
$-T$. K., Long Island City, N. Y.
Either the tuning condenser plates are shorting or you probably are experiencing oscillator trouble. The oscillator may cease to function except over a limited frequency

range. The trouble is usually due to a defective converter tube, change in the value of the oscillator grip leak (R 1) or in the value of the screen voltage dropping resistor (R2). It could be that by-pass capacitor C1 may be leaky causing the screen voltage to drop. Try a new grid leak (R1) of the same value as the original. If that doesn't do it, change R2 and

C 1 . Sometimes the oscillator coil (L1) absorbs moisture and its Q is lowered. Try drying it out by exposing it to an infrared lamp.

Radio Goes PA

How can I connect a microphone to an AC/DC radio so I can use its amplifier without using the radio circuit?
-A. S., Passaic, N. J.
Since the amplifier may not have enough gain for a crystal, dynamic or ceramic microphone, you can use a carbon microphone as

shown in the diaphragm. Install a d.p.d.t. toggle switch, $S 1$, on the chassis or the set's rear cover. Mount microphone transformer TI, such as a Stancor A4705 on the chassis or rear cover, grounding transformer frame to chassis. Also install a battery holder (Lafayette 34G5005) on rear cover and slip a 1.5 -volt battery (Burgess Z, Eveready 915 , etc.) in the holder. Disconnect the "hot" volume control lead as indicated by " X " in the diagram. Wire the new parts into the circuit as shown, using the shortest possible leads (except microphone cord). Capacitor C 1 may be an 0.01 mfd tubular.

Throw the switch one way for normal radio reception, the other way to use the mike. The volume control works for both. If there isn't enough mike volurie add more batteries. Using a telephone type carbon mike, you should get lots of sound.

An alternative is to use a Philmore Junior Microphone (Cat. No. 500) which can be connected directly to the plate and cathode prongs of the first AF amplifier tube by means of clips furnished with the mike. These are sold in many radio parts stores.

Still another, and the safest way is to get a wireless broadcaster (Knight, Lafayette, etc.) which does not have to be connected tc the set and does away with the shock hazard.

Instant Radio

How can I modify an $A C / D C$ radio so it will operate instantly when I turn it on like some TV sets I have seen advertised?
-S. R., Roosevelt Field, N. Y.
Connect a diode across the ON-OFF switch terminals of a typical AC/DC radio. With the switch turned OFF, the tubes should light but the set should not play. If it plays, reverse the polarity of the diode. Pick a diode that will handle at least 500 ma . and peak inverse voltage of at least 400 volts. They cost as little as 37 cents.

Antenna Current

How can I determine how well the antenna of a marine radiotelephone is functioning after it has been installed?
-R. J., Detroit, Mich.
Most marine radiotelephones have an antenna current indicator lamp whose brilliance is relative to antenna current flow. Some have an antenna ammeter or plate current milliammeter. If the radiotelephone does not have an antenna current ammeter, you can connect one temporarily between

the antenna lead-in and the antenna binding post. Then tune the transmitter for maximum antenna current on 2182 kc , the most important channel. If the transmitter is designed so that it can be tuned for optimum performance on each channel, follow the procedures in the rig's instruction book. Some sets, like the Hartman, have a front panel antenna tuner with which the set can be adjusted for best performance after selecting a channel.

The efficiency of a typical marine radio antenna is very poor because it is not practical to make it big enough for maximum performance, except on large ships. And, the ground connection is as important as the antenna.

Keep up with your favorite interest by having RADIO-TV EXPERIMENTER sent to your home. It's easy-just mail the coupon. 1 year: $\$ 4$.

Radio-TV Experimenter
129
505 Park Avc., N. Y., N. Y. 10022
Please start my subscription today. \square I enclose $\$ 4 . \quad \square$ Bill me.
name \qquad
address
city
state \qquad zip code \qquad 1

Photography
 Buyers'
 Guide...

Not a listing of cameras-not a puff sheet-not a directory-but a detailed report, including ratings. All 35 mm cameras on the market are tested and rated, Ratings are labeled Recommended, Intermediate or Not Recommended. All tests are carried out by Consumer's Research, Inc., the original independent non-profit testing organization.
Other major features of this amazing magazine are - Ratings of 35 mm Cameras - Top Accessories for 8 mm Movie Cameras and 120 Still Cameras - Tests of 8 mm Cameras - Tests of $21 / 4^{\prime \prime} \times 21 / 4^{\prime \prime}$ Still Cameras - Bluebook of Equipment Values.
EXTRA: A special story on the revolutionary new 8 mm film!
PHOTOGRAPHY BUYERS' GUIDE is on sale now at newsstands everywhere. Buy it today. \$1.

Photography Buyers' Guide

505 Park Avenue New York, N, Y. ID022

ASK ME

Trap It

On CB channels 9 and 191 receive a local 1000 -watt AM radio station about $3 / 4$ miles away which operates on 1400 kc . I use a ground plane antenna. How can I eliminate this interference?
-D. W. G., Lawrence, Mass.
Disconnect the lead from the antenna relay to the receiver antenna coil and connect

a wave trap in its place as shown in the diagram. You can use a shielded TRF coil such as a Miller A-320 RF with a 20 pf . capacitor connected across its secondary. Leave the primary disconnected. Mount the coil shield can to the chassis or rear cover of the set (if it is metal) and use the shortest possible leads. Tune the coil core until the interference is weakest or disappears. Try different values of capacity across the secondary if the suggested value doesn't do the trick. Make sure the coil shield can is securely grounded to the set chassis.

BCB Noise

Without moving out of the New York City metropolitan area is there any way to get broadcast band reception? Using an HQ100A and a 45-foot long wire I get good short wave but on the BC band I can't beat 300 miles.
-P. F. A., Hewlett, N. Y.

Living near New York City can impose some hardships in regard to broadcast band DX because of the presence of so many stations in the area. Lengthening your antenna may compound your problems. Also, there are so few clear channel stations that you
might have to stay up late to hear distant stations operating on the same frequencies which go off the air around midnight. Just before daybreak, you should be able to hear Cuban stations. Try 700 kc at night--you should be able to receive WLW in Cincinnati.

Two Receivers Go "Dual"

I have a short wave receiver with $1650-k c$ IF and another receiver with 455-kc IF. Would it be possible to feed the IF of the first receiver into the second receiver to get dual conversion? Would I get a worthwhile increase in gain or selectivity?

> -A. L., Philpot, Ky.

It is possible, but you might run into some feedback problems. You can tap the 1650 ke IF signal at the cathode of the last IF amplifier as shown in the diagram. If the existing cathode hias resistor (R) has a bypass capacitor across it, disconnect the capacitor. Run the $1650-\mathrm{kc}$ signal through low value capacitor C ($5-100 \mathrm{mmf}$) and a short piece of shielded wire to the antenna (inner conductor) and ground shield terminals of the second receiver.

Connect the antenna to the antenna terminal of the first receiver and the ground wire to the ground terminals of both receivers. Disconnect the first receiver's speaker and connect a resistor in its place. The

resistor should have the same value as the speaker impedance. Tune the second receiver to $1650-\mathrm{kc}$ and tune in the stations with the first receiver. The audio volume control of the first receiver will have no
effect. The RF gain controls of both receivers can be varied to get the required gain.

Another way to tap the $1650-\mathrm{kc}$ signal in the first set is to wrap the inner conductor of the shielded wire, but with the inner conductor insulation left on, around the lead from the plate of the last IF amplifier to the IF transformer. This forms a small capacitor.

Detector, Type Humaniod

Recently, you said that you heard someone say on a rudio broadcast that he perpetrated a hoax a long time ago by claiming that he heard radio programs in his head, probably due to teeth fillings acting as a detector. I have information which leads me to believe that this has actually happened to many people.
-C. M., Rock Creek, Ohio
As a result of publication of my comments, one of the best informed electronics editors in the business called me to get more particulars. Perhaps the phenomenon has happened to people. However, if teeth fillings act as a detector, what serves as the transducer that converts demodulated RF (audio) into sound waves. Wonderful idea for radio paging if selective signaling can be added. Then there's this Korean vet with a pin in his arm about the size of a $3-\mathrm{cm}$. quar-ter-wave stab used in radar antennas who can detect aircraft up to 300 miles away, and this other guy who pierced his ears. . . .

Birth Certificate Not Necessary

What is the age limit for an amateur license?
—D. P., Ballinger, Texas
There is no age limit. There are quite a few "young" hams. I got my general class ticket when I was 14 , but that was a long time ago. I once saw a newspaper clipping of a 6 -year-old boy who passed his General Class exam. So you see, if you're reading this magazine, you're old enough!

Headset Speaker Tie-up

My old radio has four speaker wires. How can I hook up earphones to it and cut out the speaker.'
-D. W., Bay City, Michigan
Two of the wires undoubtedly go to the speaker's field coil. The other two go either (Continued on page 29)

To Our Readers!

FOR THE TOPS IN ELECTRONIC READING LOOK FOR THE August-September edition of RADIO-TV EXPERIMENTER.

The August-September edition will be on sale June 29 at newsstands everywhere. Buy your copy and keep abreast of projects, news and experiments.

```
Remember! You have a
date with RADIO-TV
EXPERIMENTER on June 29
at your local newsstand.
```


Investing?

you ought to read . . .

 INVESTOR'S GUIDEINVESTOR'S GUIDE is written for all investors, large or small, novice or experienced. The 1965 Mid-Year Edition covers sucit important areas as

- How To Choose A Broker
- Family Finance
- Mutual Funds
- Top Analysts' Forecast

Buy your copy of INVESTOR'S GUIDE today! Read what the experts say about investment clubs, high-potential issues, and sther investment subjects you want to be fariliar with.

The Mid-Year Edition is available at rewsstands everywhere. The price is only $\$ 1$.

INVESTOR'S GUIDE

505 PARK AVENUE • NEW YORK, N. Y. 10022

QSO-ing the Meter

By H. E. Holland, WA4 YKK

"I just finished building the receiver, $O M$, and got the meter in up-side-down."

"Trying to check the output with an ohmmeter again?"

'Wouldn't it be a lot cheaper to have your eye glasses changed?'

GPFETNEW SBOOI KIIS

H. 493 . 45 .Watt stereo Amplifier Kit 312.95
caios FM stereo

freat riow sierco kits lrom \$oott Scotis tulf-color

muraplax Tunter 3139.95

Rush me free Scott's 24 page Custom Stereo Gulde.
 Address
 City______Z_Z___ State___

H. Scott, Inc., 111 Powdermill Road, Maynard, Mass. 565-02
other way, the speaker will be silent and the sound will be heard only in the headphones.

Dial Trouble

The dial of my short-ware set is inaccurate and far from the announced freduency. How can I improve il?
$-P$. J. Dell., Middletown, Pa.

If the receiver has tuning trimmers, tune in a station at a known frequency. Then set the dial to indicate that frequency and adjust the trimmers until you get the same station. Or, tune in the station and disengage the tuning dial, set it to indicate the frequency of the station and then re-engage the dial. This is a cheap and dirty way out. If results are poor, you will need a signal generator alignment.

Intercarrier Buzz

There is a buzz in the sound of my TV set. When I adjust the fine luning control to eliminate the buzz, the picture is not right. Hiow can I get clear sound and pictures tosether? - N. T., New Orleans, La.

Chances are your TV set employs "intercarrier" sound and a gated beam sound detector. The usual cause of buzz in the sound channel is receiver misalignment. To align the whole receiver properly a sweep and marker generator and an oscilloscope are required. If you don't have these instruments available, try replacing the sound detector tube (6 BN 6 . etc.). Also try tuning the gated beam detector "quadrature coil" for clear. buzz-free sound with the set tuned for the clearest picture. When tuning the coil by turning its ferrite core, use only a tuning wrench that fits. Some TV sets also have a potentioneter with which sound buzz can be minimized. Get a service manual for your

779^{\prime} Sentinel- 23^{\prime} CB transceiver - 342 Multiplex Generator - 380 Solid State Color Dot/Bar Generator - 790 Solid State CB Transceiver and a cast of over two hundred items.

Produced by the award winning company:

> EICO HLECTRONIC INSTRUMENT CO., INE. send coupon for your free catalog today

ASK ME another

set so you can locate these components.
There are several types of Raysistors which are about the size of a crystal can. You can get complete application information on them from Raytheon Components Division, Newton, Mass.

Lecher Wire

What is a Lecher wire and how can I measure transmitter frequency with it?
—J. M., New York
A Lecher wire was popularly used years ago to measure frequency. As shown in the diagram, two bare copper wires are stretched tight, parallel to each other (one to six inches) and supported only at their ends.

The closed end (X) is placed in the proximity of a transmitters output tank coil. While monitoring transmitter plate current, a metal shorting har is slid along the wires. The plate current will change with the shorting bar at points one half wavelength apart as in points A and B in the diagram.

Wavelength is determined by measuring the distance between two such adjacent points. Multiplying the length in feet by 0.656 or inches by 0.0547 . If the distance is 200 inches, the wavelength is 10.94 meters. Frequency in megacycles can be calculated by dividing the wavelength into 300 . In the example given, the frequency would be 27.027 mc within the citizens band.

"We're lucky! Look at all he has to go through to get a license."

MARINER TRAJECTORY

Earth at Launch
November 28, 1964

Encounter
Mid July, 1965

On November 281964 Mariner IV lifted off its pad at Complex 12 at Cape Kennedy for its rendezvous with Mars in mid July, 1965.

Inn the late Fall of 1964 a group of scientists met to announce a decision that could open new worlds to man for all time. Number-one-goal of the United States space effort, the thirteen-man Space Sciences Board recommended to NASA, should be exploration of Mars. A series of tlights could carry out physical and biological investigations, especially search for extraterrestrial life.

For man has long sought to solve the mysteries of the red planet. One noted astronomer of the 19 th century believed he saw skillfully-built canals on the planet; another saw irrigation projects only an advanced civilization could have built. One Soviet scientist claims Na ars vegetation is blue. Another astronomer theorizes Mars clouds are brown. Others see dark areas of blue-green land masses, white polar caps, red-brown deserts, seasonal color changes turning green to brown to grey within months.

Long Ago: While still anothe- pisture; a Martian civilization that lived centuries a go, one so advanced the peop e suilt both extraordinary canals and irrigation systems to sustain themselves as oxygen and water escared from their planet's atmospiere. Then, when the canals and systems could no longer sustain them, sent artificial sacellites int 3 space (we dub them the planet's moons), bult space ships and hastened off to their naw satellite homes. Others, some say, ravelled to far distant stars.

One astronomer claims he has sean evidence of atomic explosions or Mars. The less optimistic insist no human life or Ionely plant could survive in the thin Mars atn osp cere or in the cold Martian winters.

The Cause. The fact rerowned scientists and astronomers have viewad the plaret ard produced such contradictozy theories myy well be due to limited instrmentation.

in this zone

For until recently we have studied this vital planet through, first: the naked eye, then crude, sometimes home-fashioned telescopes, more recently 100 to 200 -inch telescopes, the spectrograph (some blame the spectrograph for lack of water news on Mars), and still more recently, ultra-violet and infrared photography, all limited instruments when viewing a planet that at its orbiting best is 35,000 ,000 miles distant in space.

Better Billing Does It. But recentlysparked headline attention to Mars has spurred a group of young scientists to fashion a whole show of new electronic reporters to visit Mars personafly and televise, telemeter and radio-probe until the mysteries of the red planet are solved.

First Reporter To The Scene. On November 28,1964 , a 575 -pound windmill spacecraft atop a towering 100 -foot Atlas-Agena flamed off the launches of Florida's Cape Kennedy. Mariner IV was headed for Mars!

At the end of a seven-months-long trip, when the spacecraft homes in on the planet, television cameras will turn on six to ten hours before the lights of Mars switch on the 330 -foot long tape recorder.

When the recorder snaps on, it will signal the cameras into action, to scan 22 pictures -two at a time-through a reflecting telescope 8,600 miles from the planet. Half a day later the 200 -line pictures, now stored on magnetic tape in digital form, will start beaming their way back to an eagerly-waiting audience on earth, while the craft itself soars on into space.

Why The Delay? Reason for the delay? The 250,000 bit pictures can be scanned at a speed of 10,700 bits per second but can only snail-pace their way home at a speed of 8.33 bits, taking a long suspense-ridden $81 / 3$ hours to completely reach earth-bound television screens.

What we will learn from this first reporter Mariner IV is anybody's guess right now. But Boeing Aircraft's young Frank S. Holman feels pretty impatient about the whole fly-by idea. He thinks we could send an orbiting instrument package to Mars by ' 69 that would report atmospheric news over a period
of months. He sees such an orbiter dropping a round sterilized hall through the thin Martian air-sterilized because we dare not affect Mars' soil with germs from the earth.

Weighing thirty pounds and powered simply (probably by silver-cadmium battery) with a receiver-transmitter to send and respond to signals from earth, the 24 -inch ball probe would tip us off as to problems future astronauts may expect from atmospheric pressures when they land on the planet.

The Carafe. For more advanced missions he pictures a series of double-decker crafts, one deck to circle the planet, the other to land and relay news from the planet's surface. The lander Holman visualizes would stand a noble six-feet tall, be built like a carafe, and carry an automatic drill to bore into Martian soil and analyze its contents chemically.

Better Yet, the Multivator. Stanford University's Dr. Elliott Levinthal says "Multivator" could make it to Mars by '67. The dark-haired brilliant young scientist refers to a lander ten inches tall, $2^{3 / 4}$ inches round, now sitting atop Stanford research tables at Palo Alto, California. Multivator's aim in life is to seek out basic carbons common to all living forms. And when it finally does go into its act on Mars, a tiny vacuum cleaner device will first scoop up samples of soil. run the "dust" through a chemical process, and if any sign of life exists, a photomultiplier will scan the chemical change, the lander then radio the news to earth.

Levinthal claims his proud Multivator will be able to spot the present stage of Martian evolutionary development, says even if it reports a sterile Mars, we may find important clues to living processes if we detect historic traces of unsuccessitul trials at life.
"Wolf Trap" Diets. At the University of Rochester, New York, Dr. Wolf Vishniac places a tiny three-ounce gadget (slimmed down from a robust 30 pounds) on his laboratory floor. A tiny door opens, and a small tube that looks like a miniature vacuum cleaner hose springs out. Swooshing its way around the floor, the tube draws dust into the "Wolf Trap" inner chamber. If the chemical "soup" inside turns cloudy, a beam of light
 separate from bus (lower portion) and it'll be propelled on an impact course.

Inner sphere in Advanced Mariner lander cortains scientific payload and comnunications, and is protected by impact crush-Ilp case.

The entry and landiny sequence for the Advanced Mariner on the Marlian surface.

Mars, the Red Planet

Mars is the fourth planet in order of distance from the sun. It has been observed from remote antiquity since its "red" or "ruddy" color and relatively rapid motion among the stars make it a very conspicuous heavenly body. Mars is best observed at opposition at midnight. The distance between earth and Mars at an average opposition is about $45.000,000$ miles, but a favorable opposition occurs every 15 to 17 years when this distance is reduced to $34,000,000$ miles.

Some of Mars statistics (and earth's) are: radius. 4,200 (7,918); days in a year, 687 (365.26) : million of miles mean distance from sun. 141.5 (93.0); escape velocity in mi./sec., 3.1 (7.0) ; surface gravity 0.38 (1.00) : period of rotation, 25 hours, 37 minutes (24 hours).
will then scan organisms breeding in the chamber.
"Gulliver." Wolf Trap and Multivator have another brother named "Gulliver" living on the West Coast. Gulliver rooms at the California Institute of Technology in Pasadena, has cut his weight to a slim $11 / 2$ pounds, and boasts an organic chemical "soup" in his inner chamber labelled with radioactive carbon. When NASA books Gulliver to play the Mars circuit, small bullets will fire three sticky fingers of string, each 25 feet long. onto the Martian soil.

When the strings reel in they will haul back samples of soil and a radiation counter will then detect carbon dioxide gas if the samples show any signs of life.

Through Space Will Travel. But before these clever landers can perform their Martian best. they must travel a long 400,000,000 -mile road up through space. For this purpose NASA books Mariner-Voyager missions to Mars over a ten-year period ending December 1975. Avco engineer Dr. Paul C. Dow, Jr., pictures just how these doubledecker space missions will operate,

Same Start. Both will launch from Cape Kennedy, separate booster from craft in space, Mariner from an Atlas-Centaur launch, Voyagers to be Saturn'd, then unfold solar panels to pick up power from the sun. An onboard antenna will heed radio instructions from earth, and send back cosmic, mag-netic-field and radiation news of the day.

When an Advanced Mariner carrying its 1500 -pound payload reaches within halfmillion miles of Mars, its lander will leave the "bus." The bus will then travel past the planet, snapping 100 TV pictures scanned at a distance of 4,000 miles, to relay to earth. Dr. Dow estimates these pictures may take as long as ten days to reach earth. The bus will then soar on its way round the sun.

The lander will speed toward Mars' surface, an aluminum honeycomb "crush" protecting the instrument package as it surfaces. When the force of impact opens the lander, the enclosed instruments will arrange themselves on Martian soil, sample the planet's dust, and report its findings to a nearby antenna to radio back to earth as long as power lasts, which will probably be only a few hours.

The Big Show In Space. What the Advanced Mariner missions, booked to soar to Mars, '69 on, don't tell us about the red planet, the heavier Voyagers, slated for
(Continued on page 119)

Mechanical Filter Adds Q to Your Receiver's IF's

By Herbert Friedman, W2ZLF

There's an old African proverb that says: "Not enough is no good, while too much is even worse": and while this sage advice originally applied to the number of girl friends, it holds true for radio reception. Whether you're an amateur. SWL or DX'er, you've got to be able to hear many stations in order to derive full satisfaction from your hobby. But what happens when you hear too
many stations? All you got is squeals and squawks: and it's debatable whether too few or too many signals ruin what would otherwise be exciting hobbies.

While it's relatively easy to snatch a few extra signals by using a better antenna or an RF preamplifier ahead of the receiver, short of spending a few hundred bucks for a superselective receiver there's not much you can do when poor receiver selectivity buries ycu in a sea of signals-all interfering with each other. At least there was little you could do until a few months ago, but now, a mechanical filter-the "selectivity heart" of the most modern quality receivers-can be yours for less than $\$ 20$. That's right, a real honest to goodness mechanical filter, the device used in the most expensive receivers when razor sharp selectivity is the prime objective.

Now we're not talking in terms of relatively expensive receiving equipment. The mechanical filter we've got in mind can be used by virtually anyone, even the BC DX'er with a ten buck table radio. The only requirement is that your receiver (or radio)

Update your present receiver to cope with today's crowded bands!
Pick up distant stations formally masked by strong local signals! Achieve peak skirt selectivity with $B C B, S W, A M$ and $S S B$ receivers!
have a 455 kc . IF amplifier, no other frequency. If you fit this category stick with us and we'll tell you how to hear those rare weak ones that everyone except you seems to receive.

Selectivity. I.et's take time out for a moment and review that magic thing called selectivity; for after all, you really can't get that most out of something if you don't know what in heck it's supposed to do.

The principle behind the superheterodyne receiver is the key to selectivity. The superhet uses a local orcillator to convert the received signal to a more useful frequencyone that can be easily amplified. For example, a 20 megacycle signal is not the easiest thing to amplify. If one tried to just huild a string of 20 mc . amplifiers and then detect the amplified signal he would certainly run into regeneration unless heavy shielding was used, and the selectivity would be low because the tuned circuit O's would be low, and it would take two or three times the required number of amplifiers. Now don't get us wrong, it can be done, hut at a hefty ex-
pense-and it wouldn't be worth the time, effort or money. But look what happens if we take the same 20 mc . signal and push it through a superhet. By using a local oscillator to beat the signal to, say, 455 kc ., we get a signal that can he handled easily. Today, it's a snap to design a high gain 455 kc . amplifier, and at 455 kc . the tuned circuits have sufficient Q to give decent selectivity: and it's selectivity that determines a receiver's effectiveness.

IF Bandpass. Generally, when only IF amplifiers are used to achieve selectivity the receiver`s overall selectivity is determined by th number of IF amplifiers. As example, Fig. 1A (on page 48) shows the selectivity curve for a single stage of IF amplification.
Note that maximum gain occurs at the IF frequency with the gain falling off on either side of the center frequency. If there were two signals of equal strength separated by 5 kc ., and you tuned in either one, the tuned signal would be received at maximum gain (the center frequency) while the remaining signal would be received 5 kc .

higher or lower (depernding on its relationship to the tuned signal). Note, from Fig. 1A that a signal removed 5 kc . from center is attenuated (actually amplified less) 6 db . So, from the speaker you would hear two signals, the tuned signal at maximum volume and the second signal which will have one fourth (6 db less) the volume.

Now we all know that virtually all broadcast frequencies are just loaded to the hilt with signals, and even a 5 kc . spacing would be a luxury. Actually, there could be three, four, five, or more phone signals in a 5 kc . segment: and certainly, on the CW bands there could be ten or twenty signals. If we used a receiver with the selectivity curve in Fig. IA wed be drowned in a sea of incoherent signals (QRM). So manufacturers separate the signals by narrowing the bandpass.

If we take the IF amplifier which produces the Fig. 1 A bandpass and add a second or third amplifier, and we use High-Q tuned circuits, we could obtain the selectivity curve shown in Fig. 1B. Note that the signal
removed 5 kc . from the tuned signal will be attenuated 60 db -you'd be hard pressed to even know it's coming out of the speaker. Naturally, the signals even closer to the center frequency will be similarly attenuated. The narrower the bandpass is made the less the interference from signals adjacent to the desired signal. (As yet, there is no way to separate two signals on the same frequency.)

Bucks \& Bandpass. But there is a practical limit to increasing selectivity through the use of IF amplification. The manufacturer designing a table radio to sell for ten to fifteen bucks certainly can't use more than one stage of IF amplification, so the BC DX'er using this radio wouldn't be able to separate the weak rare ones buried between two strong locals. And while the communications receiver manufacturer usually includes additional amplification for improved sensitivity and selectivity, selling price determines how much he can give you. (True, the modern budget receiver gives you a lot for your money, but they can always use extra selectivity.)

Adding a mechanical filter to an $A C / D C$ receiver is electrically identical to a SW receiver except filter is secured in place with silicon rubber adhesive. First, find 1 st IF tin (left) and remove; add adhesive (right) to base of hole; position filter in place (lower left) and then tape in place (lower right) and allow time for adhesive to set hard. Electrical connection and tune up procedure remain
 the same-quite easy to do.

Fig. 1. In (A) above, graph shows bandpass of a simple stage of IF amplification permitting severe QRM by stations up to 5 kc . either side of center frequency. Even stations further out can cause trouble. In (B) below, tuned cascaded IF stages can give -60 db attenuation 10 kc . from center frequency-still not good for nit-picking DX AM-SW stations.

The Mechanical Filter. One of the best ways to achieve razor sharp selectivity is through the use of a mechanical filter. The filter consists of several sections made of nickel alloy resonators which pass virtually only the frequency to which they're tuned. Transformers at both ends couples the signal in and out.

Fig. 2 shows the selectivity curve of a typical mechanical filter. Now keep in mind that this is a single filter. Note the steep sided response; signals only two or three Kc. removed from the center frequency are very sharply attenuated. If we went back to our two signals separated by 5 kc . the interfering signal would be so sharply attenuated that you wouldn't even know it existed. Actually, even signals within two kilocycles or so of the center frequency would cause no reception problems. Within the general consumer market, it would take three, four or
five stages of specially designed IF amplifiers to achieve the bandpass characteristics of a single mechanical filter.
"Okay," you say, "The mechanical filter is great, but I use a table radio for BC DX'ing and a hudget receiver for SWL'ing. So what good is a lot of theory about an item used in expensive receivers?" True, mechanical filters used to be thought of in terms of expensive receivers, but now you can consider installing one, even in a table radio.

The Lafayette Radio Mechanical Filter Part No. 99-(0123, \$19.95) has been specifically designed for easy installation by the average electronic hobbyist. It is supplied pre-mounted on a printed circuit board (see Fig. 3) complete with input and output transformers and soldering points. It is also pre-aligned to a high degree of accuracy; a signal generator is not required.

SW Receivers. The performance of this filter is the bandpass shown in Fig. 2; that's right, the nearly perfect illustration we used is the Lafayette filter. However, keep in mind that all is not perfect. The simplified receiver modification we will describe has one major problem: that is, the filter results in a loss of approximately one S-unit (6db) in overall sensitivity. While this might be no problem for the BC DX'er and the SWL because even budget equipment has more than enough sensitivity up to about 7 mc ., it will be sharply noticeable at those frequencies to which your receiver gives only marginal performance. But keep in mind that sensitivity can often be restored by using a preamp or preselector ahead of receiver.

Cheap Jobs. Table radios used for BC DX'ing require a little thought. Many, many, low cost models are pushed to the design limit so you must carefully consider whether it can stand a loss in sensitivity of one S-unit. First count the number of IF amplifiers (do this for communication receivers too). As a general rule of thumb the IF amplifiers number one less than the number of IF transformers (usually cans), i.e: two cans equal one amplifier-one can is the input and one the output;-three cans equals two stages. If your radio or receiver has two IF stages it most likely can stand the loss of a little sensitivity. But if it has only one stage take careful note whether you must "strain" to hear most stations, for if you must, the receiver probably cannot stand even a one-S-unit loss. On the other hand, if you're using one of those old, handsome (and expensive) table radios that "burst" with

Fig. 2. Bandpass of mechanical filter is only 5 kc . wide at 60 db down. Note steep sides of curve block out side band pickup.
signals, you'll probably get away with the filter's loss even though it has only one stage of IF amplification.

Installing the Filter. The filter is installed in the plate circuit of the 455 kc . mixer or converter tube; actually, it replaces the first IF transformer. (If your receiver is the dual conversion type make certain you corinect into the 455 kc . mixer, not the high frequency mixer.) Fig. 4 shows a typical mixer circuit. Note that the B+ feeds through the transformer's primary, and the AVC voltage feeds through the secondary. Now look at the mechanical filter installation in Fig. 5; note that blocking capacitors, C 1 and C 2 , are used to prevent the B+ and AVC voltages from entering the filter's coupling transformers. Do not try to feed the voltages through the filter's input and output transformers, it's a sure way to blow twenty bucks.

Resistors R1 and R2 are added to the circuit to provide a plate impedance for the mixer and an output termination for the filter; do not eliminate these components!

That's all there is to be filter's electrical installation, it should certainly present no difficulties. But the physical mounting is something else, and Radio-TV ExperimentER has worked out two procedures which should work for most of you.

Installing the Filter. Table radios are notoriously short on space and the filter is going to be a tight fit. Unsolder all the leads from the IF transformer's terminals and then remove the transformer. Orient the filter over the hole in the chassis that formerly passed the IF transformer's terminals and move it around until no part of the filter extends beyond the chassis (or the chassis won't fit back into the cabinet). The
filter's transformer slugs should face towards the rear apron to allow adjustment. Place two pencil marks on the chassis to indicate the ends of the assembly and remove the filter. Next, place two gobs of silicon rubber adhesive just inside the pencil marks. The rubber is available under a variety or trade names; it is made by General Electric (GE) and goes under the name of $R T V$ if purchased in a radio store, or a variety of names such as Auto Windshield Sealer or Clear Seal. It also comes in several colors. Fiegardless of the color or name it's essentially the same product so use whatever you can get.

Line-up the filter assembly with the pensil marks and press the assembly into the rubber all the way down to the chassis. Using masking or plastic electrical tape restrain the assembly so it will be vertical when the rubber hardens (about 24 hours). Then' remove the tape and connect the filter into the radio's circuits. If you are careful, you can keep on working while the adhesive sets.

Don't use "floating" connections. All components should be tied down. Either a terminal strip can be secured through one cf the IF transformer mounting holes, or if there are no holes, the terminal strip can b? soldered directly to the chassis immediately adjacent to the filter. Don't use long leads; long leads can result in instability of the IF strip (the IF amplifiers self-oscillate). Keef the leads and connections as short as possible

Fig. 3. The Mechanical Filter (Part No. 990123), priced at \$19.95, is available at Lafayette Radio, 111 Jericho Turnpike, Syosset, N. Y. 11791. Technical specifications are available on request to experimenters.
and in the same relative position as the or iginal connections.
You will note that the letters G and P are etched into the filter assembly. The connection terminals on the side marked G must connect to the IF amplifier's grid; similarly, the connections on the P end go to the mixer plate. As a general rule, you'll reduce possible instability by mounting the filter so the G terminals are nearest the chassis. Then the grid connections will be as short as possible.

Since a communications receiver generally has a lot more free chassis space, an easier and more rigid filter mounting can be made. Again, remove the first IF transformer; but now, strip it and save the mounting lugs. Mark the location of the mounting holes on the filter assembly, and then drill the PC board for a \#2 or \#3 screws. Attach the mounting lugs to the board and then mount the whole assembly just as the IF transformer was mounted. Use a nut on both sides of the chassis to insure rigidity. The electrical connections are the same as for the table radio installation.

Filter Effects. Turn on the radio and tune across any band to make certain the filter is working. Forget about the sound quality, all you're looking for is signals. If all signals are extremely weak--hardly dis-tinguishable-or the receiver is inoperative, there is a wiring error. As we said, the filter

Fig. 4. Typical mixer or converter stage of a receiver showing lst if tunable transformer.

Fig. 5. Circuit modification for mechanical filter-* indicates added circuit components.
is pre-tuned, so if you ve made the installation correctly the receiver should work right off-the-bat.

When you're satisfied the installation is okay, tune in a very weak signal, and using an insulated alignment screwdriver, adjust the filter's slugs for maximum speaker volume or maximum S-reading. That's all there is to the adjustment. (In most instances the alignment will be perfect and adjustment will make no improvement.)

The first thing you'll notice when you use the receiver is that all signals sound bassy. This is normal. The sharp bandpass cuts a phone signals sidebands, and it's the sidebands that contain the high frequency energy. If you want "extra" highs just detune the signal very slightly from center tuning.

If you're monitoring $C W$, say with a 1 kc. pitch, and interfering signal comes on somewhat off-frequency and jams you with a, say 5 kc . tone, just detune slightly; you'll only change the pitch of the desired signal while the interfering signal disappears as if it stepped off a cliff (detuning puts the interfering signal outside or down the bandpass).

Some receivers-particularly of the budget variety-simulate selectivity by deliberately applying regeneration to the IF amplifiers (when you want it it's called regeneration; when you don't want it it's cailed instability). When a regenerative amplifier is combined with a mechanical filter the overall selectivity can be so great as to make the "receiver useful only for CW reception or "rare" DXing for the purpose of obtaining QSL's. The extremely sharp selectivity will make phone signals extremely "muddy," certainly not enjoyable for straight listening.

And just for your reading pleasure, here's the practical results of the two conversions shown in the photos. The communications receiver, which delivered the typical decent performance common to budget equipment, became a superb CW receiver. Where we formerly had to suffer through the severe QRM on the 80 meter band we could now virtually separate every signal.

The table radio is actually one of those old AC/battery tube type portables with good sensitivity. Where formerly we could hear two local stations right next to each other, actually sort of "touching" each other, we now can not only separate them, but at night we pick up two Canadians in between in the clear. No reason why you can't expect similar results.

nuirict me MOUHOM

By Edward A. Morris

An inexpensive Scuba accessory for underwater communications

- If you are letting a thin wallet stand between you and one of those expensive underwater diving inte coms, then the Aqua-Com is your answer! The Aqua-Com more than meets the needs of the average Scuba diver 11 has a range of 10 to 15 yards, and will operate at depths of more than sixty feet. Best of all, the Aqua-Com will costyou no more than about $\$ 25$ and several evenines of your spare time.

How it works. The Aqua.Com is really nothing, more or less, tham a public address system that will work uncer water. Your voice is picked up by the throat microphone, ampl lied by a tensistor module and fed to am underwa ar speaker. Sonic vibration's seneratec by the speaker are transmittec throughthe water and when they reach your ears, they are detected as speesh.

Detail drawings above provide the information necessary to pre-drill the aluminum case. Belf loops made from wire hangers.

Dimensions for the rubber traction pads used to mount 6 -volt battery on air tanks.

The completed unit (top photo) is all set for installation with 6 -volt battery on driver. Carbon throat microphone (bottom photol doesn't get in diver's way.

The Aqua-Com should be constructed from materials that are immune to the corrosive effects of sea water. This means use only brass, aluminum, or nylon nuts and bolts. Steel, even chromed steel will corrode when exposed to salt water. Use wire with a solid plastic or Teflon insulation. There is no suitable substitute for the speaker specified in the Parts List. The one specified has a plastic-impregnated speaker cone and dust cap, plus an aluminum voice coil and a heavily zinc-plated frame. Although not specifically designed to operate under water, it does a good job when modified as shown, and holds up well when cared for properly.

Liquid silicon rubber is used to seal, join, and insulate various parts of the Aqua-Com. Both General Electric and Dow Corning produces silicon rubber for sealing and caulking use in bathrooms. The silicon rubber is applied from its tube like toothpaste

Six-volt battery pack is strapped to diver's air tanks (top photo). Aqua-Com is attached to diver's belt except in bottom photo where it can be strapped to tanks.
and dries to the touch in about an hour. Use only the batteries specified in the parts list since ordinary zinc-carbon batteries are not sealed well enough to withstand immersion and will fail in a short time. The mercury and alkaline batteries specified in the Parts List are sealed well enough to be used down to 60 feet.

Actually, you can use the Aqua-Com down to 250 feet. but battery B1 won't last more than about 5 hours once its been down past 60 feet. However, battery B2 is pressurized to 250 feet, which is more than adequate. You can try sealing $B 1$ by using epoxy cement at the seams at each end of the battery, but this trick works only with the alkaline cell specified. Don't try it with the mercury cell, since the epoxy will prevent the positive terminal from making good contact with the battery clip.

Construction. The first step in the con-
struction of the Aqua-Com is to remove the microphone plug on the T-2 throat mike and to splice on a 3 -foot length of plastic lamp cord. After cutting off the old microphone connector, strip back the cable's outer rubber insulation one inch. This exposes two rubber insulated wires. Strip $1 / 4$ inch of insulation from each of these wires, and solder on the lamp cord. Cover the connections with liquid silicon rubber to insulate. When the silicon is dry to the touch. tape a 2.5 inch section of coathanger wire over the splice. The coathanger wire serves to prevent flexing and possible failure of the splice. Cover the splice with plastic tape, then apply silicon rubber over the entire splice, including the end of the tape.

While waiting for the silicon rubber on the microphone cable to dry, remove the speaker from its original enclosure, cut off its mounting ears and smooth any ragged edges on the speaker with a file. This should leave the speaker frame more or less round. Coat the speaker's cardboard rim and center dust cap with several coats of a rubber-based cement such as Ply-O-Bond. While the cement is drying. prepare a small quantity of epoxy cement according to the manufacturer's directions. Apply the epoxy to the speaker's terminal strip. Carefully coat the entire fiber strip, top, hottom and all four edges. Don't allow any of the epoxy to drip onto the speaker cone or the terminals. Set the speaker aside and proceed with the transformer preparation.

If you use the transformer specified in the Parts List, cut the black, brown, and white wires close to the transformer body. Completely cover the transformer with silicon rubber, paying special attention to the areas around the leads. Be sure you leave no area of the transformer uncovered. Hang the transformer up by the leads to dry. If you use a different transformer than the one specified, make sure it has the same electrical ratings as the one specified.

Preparing the case. The mechanical layout shown in the detail drawings allow: uncrowded and easy construction. Centerpunch and drill all holes in the case. The battery clip for BI is mounted on the back cover plate with two $4-40 \times 1 / 4$-inch screws. The screw heads should be inside the case and the nuts outside, otherwise the battery' will not seat properly in the clip.

Form the belt loops out of coathanger wire. You will find the wire much easter to work if the ends are first annealed. Heat the
wire to a glowing orangered in the tlante ot a blow torch or gas burner, allowing it to cool slowly.

Cut the speaker grille out of a piece of perforated aluminum. Make sure that the mounting holes match with the ones on the case. If they don't, use a rat-tail file to coax them into alignment. Next, mount amplifier module PA-9 on the speaker. To be sure that the amplifier is mounted in the proper position, set the speaker on a table in front of you with the speaker lugs facing you. Place the amplifier module on the speaker frame so that it is on your right side. The leads from the amplifier should be coming out

The pictorial diagram shown above should be used only if the terminal configuration in the amplifier module you purchase is identical with the diagram. Otherwise, follow the diagram supplied with the unit. Although the module may appear to be different, it is an exact electrical replacement.

SILICON RUBBER HOLDS
AMP TO SPEAKER FRAME

Parts layout is not critical, however, be sure all parts are treated as per text.

Schematic diagram does not show amplifier details-not necessary for moduled part.

Parts List

RCA VS1 334 manganese alkaline cell
B2-Burgess TWIS 6 -volt pressurized battery (Allied Radio 55,114). Do not make any substitution except as noted in text.
Mic.-Throat microphone, surplus type T-30 (John Meshna, Dept. TVE, 19 Allerton St., Lynn, Mass., Fair Radio Sales Co., 2133 Elida Rd., P. O. Box 1105 , Lima, O., and many other electronic surplus suppliers)
SPKR-Misco weather-proof speaker, model MS-38 (Lafayette Radio 44G5201-see text)
T1-Transistor transformer; 500-ohms primary; 8-ohm secondary Lafayette 99G6129 or equiv.)
TS1-6-lug terminal strip, terminal 4 connects to ground
1-Amplifier PA-9 module lavailable at Gen stores. Also, Olsen Electronics as TR-37 and Lafayette as 19G15111
$1-4^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ aluminum box with two removable $4^{\prime \prime} \times 4^{\prime \prime}$ sides, must be unpainted
1-Neoprene rubber, closed sell (See text and your Scuba supplier)
1-Cotton straps, as required
Misc.-Plastic-tovered lamp cord, rubber grommets, plastic cable clamps, epoxy sement, tube of rubber sealant cement (see fext). $4^{\prime \prime} x$ $4^{\prime \prime}$ piece of perforated aluminum sheet, plastic tape, coat hanger wire, solder, plastic-covered wire, plastic hardware, etc.
Estimated cost: $\$ 25.00$
Estimated construction time: 3 hours
toward you. Now get down to the level of the table, and make sure that the top of the speaker frame is the highest point of the assembly. The top side of the amplifier module should be slightly below the level of the top of the speaker frame. Amplifier module is now attached to the speaker frame with silicon rubber. It is temporarily held in position with a "C" clamp, or a rubber band wrapped around the amplifier and the speaker frame. Silicon rubber is to be applied so as to form a bridge between the speaker frame and the amplifier module. Make several such bridges, one on each side of the
(Continued on page 118)

Organs Without Pipes

Fig. 1. For 60 hours of soldering fun, a kit builder can save over $\$ 400$ by assembling the Heathkit/Thomas GD-983 transistor organ. Seventeen rich and true organ vaices with countless melodious chime variations pour forth from the GD-983's semiconductor heart.
tones must follow some definite rules.
For instance, the familiar musical scale consists of 12 tones. The tones follow a precise relationship. They're usually defined in terms of the frequency of the "A above middle "C", which is also known as "A3". The frequency of A3 is 440 cycles per second.*

All notes with the same name fall into even-harmonic relationship with each other. The A an octave above A3, known as A4, has a frequency of 880 cps , while A2 (an octave below our standard) is 220 cps .

The other 11 tones of the scale fall into fractional-harmonic relationship. Middle C, or C3, is at 261.626 cps . The next note up the scale, C sharp 3, is 277.183 cps . D3 is at 293.665 cps ; the remaining tone frequencies are shown in Table of Musical Notes and their frequencies.

[^4]Why the odd relationships? The answer to this one is hidden in the answer to still another question-why don't all instruments sound the same?

Voicing. The particular "voice" of a specific type of instrument is brought about by the harmonics or "overtones" of the note sounded, which are either emphasized or suppressed by the instrument. For instance, the violin's sound contains 60 per cent funda-mental-frequency sound, 20 per cent second harmonic, an octave higher, 10 per cent third harmonic, and the remaining 10 per cent is made up of still higher harmonics. (See Fig. 2.) A flute, on the other hand, produces an almost-pure sine wave (single-frequency) tone, with very few harmonics present. Now you can understand why a violin and flute sound different even on the same note.

The fractional-harmonic relationship of the notes in our scale is also due to the highharmonic content of the instruments. For instance, the third harmonic of C3 is almost exactly the same frequency as the fundamental of G4. (See table of Musical Notes.) Similarly, the third harmonic of E3 is the same as C5.

These relationships between the notes of our scale are what make the difference between music and discord; if all the high harmonics present blend together smoothly, we have a "pleasant" sound. If not, we have "discord".

Character of Sound. And without half trying, we have slipped over into the area of "complex waveforms" without so much as a pause for breath. This somewhat frightening name is simply a way of saying "a sound waveform made up of a fundamental and a number of its harmonics, all at the same time." Since the harmonics give individual instruments their character, it's obvious that music is made up of complex waveforms.

However, the character of a musical instrument comes from more than just the harmonic content of the sound. Equally im-

Fig. 2. Breakdown of the fundamental frequency and harmonics in a violin's sound.

Fig. 3. Besides keeping both hands busy, the musician's feet control organ's volume and play 13 -note heal-and-toe pedalboard.

Fig. 4. 12 fixed tone generators (one not visible) lined up like soldiers provide the musical tones for keyboards and pedalboard.

portant is the speed with which the sound starts and stops. For instance, a piano and an organ can be voiced with almost identical harmonic content-yet will sound far different, since in the organ the sound continues so long as the key is held down, while in the piano the sound hits rapidly, then dies away.

Differences in reverheration time can make two instruments of the same type sound radically different, as for instance the "honky-tonk" piano versus the concert grand. And the rapid flutter of pitch known as "vibrato," or its absence, does much for establishing the individuality of the instrument.

Fig. 5. Extremely simplified flow diagram of an electronic organ-cables connect blocks.

Fig. 6. Master-oscillator/triple-divider circuitry used in Heathkit/Thomas orgon.

Once we know the various factors that make an organ sound like an organ, rather than like a piccolo or a piano, we can readily design electronic circuits to duplicate the sound of the organ-and we're in business, without the pipes.

The Organ. An organ keyboard contains 88 keys, like a piano, but they are arranged in two "manuals" or separate keyboards, known as the "swell" and the "great." In addition to the 22 manual keys, a pedal register is included, with 13 more tones as in the Heathkit/Thomas version (Fig. 3).

This would be a total of 101 different tones -except that an organ has a number of different stops*, and each stop produces a separate voice-tone from the same key. Thus, an organ having 16 voicing stops is capable of producing 1,616 different tones from its 101 keys, if only one stop is used at a time. Since more than one stop can be in use simultaneously, the number of different voicetones which an organ can produce is almost unlimited.

Early electronic organs used a different tone generator or oscillator for each of the 101 keys, and some designs used additional tone generators for some of the different stops, leading to several hundred oscillators or tone generators per instrument. The mod-

[^5]
Organs Without Pipes

Fig. 7. Switching in the GD-983 is a very simple affair (see photo right). One contact wire per key (below) serves as the wiper of sin-gle-pole, double-pole, spring-loaded switch.

Table of Musical Notes and Their Frequencies

Note	cps	Note	cps	Note	cps	Note	cps
C0	32.703	G\#1	103.826	E3	329.628	B4	987.767
C\#O	34.648	A1	110.000	F3	349.228	C5	1046.502
D0	36.708	A\#1	116.540	FH3	369.994	C\#5	1108.731
D\#0	38.891	B1	123.470	G3	391.995	D5	1174.659
EO	41.203	C2	130.810	G\#3	415.305	D\#5	1244.508
FO	43.654	C\#2	138.591	A3	440.000	E5	1318.510
F\#0	46.249	D2	146.832	A\#3	466.164	F5	1396.913
G0	48.999	D\#2	155.563	B3	493.883	F\#5	1479.978
G\#0	51.913	E2	164.814	C4	523.251	G5	1567.982
AO	55.000	F2	174.614	C\#4	554.365	G\#5	1661.219
A\#0	58.270	F\#2	184.997	D4	587.330	A5	1760.000
BO	61.735	G2	195.998	D\#4	622.254	A\#5	1864.655
Cl	65.406	G\#2	207.652	E4	659.255	B5	1975.533
C\#1	69.296	A2	220.000	F4	698.456	C6	2093.003
DI	73.416	A ${ }^{2}$	233.082	F\#4	739.989	C\#6	2217.461
D\#1	77.782	B2	246.942	G4	783.991	D6	2349.318
El	82.407	C3	261.626	G\#4	830.609	D\#6	2489.016
F1	87.307	C\#3	277.183	A4	880.000	E6	2637.021
F\#1	92.499	D3	293.665	A\#4	932.328	F6	2793.826
G1	97.999	D\#3	311.127				

ern approach typified in the Heathkit GD983, however, uses a limited number of master tone generators, and derives all the other needed tones from these few transistorized circuits (Fig. 4).

In the GD-983, 12 main tone generators (known as master oscillators) suffice. They are tuned to produce next-to-the-highest octave available in the instrument, from 739.989 to 1396.913 cps . For the top octave, which is used only occasionally, bandpass filters separate out the second harmonic of each master oscillator. For lower octaves, cascaded frequency dividers are employed. Each divider stage cuts the tone frequency in half, dropping the note by an octave for every divider it passes through. The outputs
of the tone generators then pass through the keying circuits, where keyboard-operated switches select which are to be used at any given instant, and on to the voicing circuitry which produces the correct mixture of harmonics for the selected voice stop. From the voicing circuitry, the tones go on to the amplifier and speaker. The basic organization of the instrument is shown in block form in Fig. 5 , with most of the details left off for clarity.

The Tone Generators. The heart of the instrument consists of the tone generators, which in the GD-983 cover the notes from F\#4 (739.989 cps .) to F5 (1396.913 cps.$)$ by master oscillators, and produce lower notes by "counting down" in frequency dividers. The master oscillators and fre-
quency dividers are connected as shown in Fig. 6.

The oscillator itself is designed to produce an output rich in harmonics, to assure that the voicing circuits have enough of the right harmonics to form any desired waveform. The dividers are identical to the flip-flops used in digital computers, and their outputs are square waveforms.

Square waves contain all the odd harmonics of their fundamental, but none of the even ones. Since most of the voicing circuits require both even and odd harmonics, the output of each divider is mixed with a part of the output of the preceding divider stage to form a staircase-shaped wave having both even and odd harmonics. This mixing is done by the resistors shown in Fig. 6.

Keying. From the tone generators, the tones pass through a multi-conductor cable to the keying circuits. Each tone, F1, F2, $F 3$, and $F 4$, to use the four F notes as an example-has a separate line on this cable.

To get the extra-low pedal tones, additional divider circuits are used, driven by the dividers of the main tone generators. The fifth octave is synthesized, when needed, in the voicing circuits which we'll look at a little later.

The keying circuits are operated by the manual and foot pedal keyboards, and it is here that the attack and decay times of the sound signals are shaped to meet organ specifications. In days past, the keying circuits consisted of multi-contact switches of intricate mechanical design, mounted across the back of each keyboard. (See Fig. 7.)

Diode Switching. However, computer circuitry makes another appearance in Heath's GD-983, with the use of diodeswitching circuits for keying of the swell and pedal keyboard circuits. Use of the diodes reduces the switch requirement on the keyboard itself to a single contact per key, except for the 28 swell keys which produce chime notes. These must have 3 extra contacts per key, to sound the chimes.

Fig. 8 on page 92 shows a simplified schematic of the diode switching used in the GD-983. Only a part of the circuitry is shown-just enough to illustrate how the diodes route the tone signals from the generators to the various signal-output bus lines. Actually, each of the 44 keys on the swell manual keyboard of the GD-983 has six diodes associated with it.

The parts shown in Fig. 8 include two keyswitches, one for F2 tone and the other for

F3 tone, and the diodes which route the F2 tone signal to the proper output bus lines when each of the keyswitches is closed.

With both keyswitches open, as drawn in Fig. 8, negative voltage from the B - line is applied to diode SD6 (F3). This reversebiases the diode, preventing signal from passing through it.

When keyswitch F2 is pressed, it connects resistor $\mathrm{Rl}(\mathrm{F} 2)$ to the +15 -volt bus line. As soon as capacitor Cl charges, the +15 volts is applied to resistor $\mathrm{R} 8(\mathrm{~F} 2)$, and thence to diode SD4(F2). This forwardbiases the diode, and allows the positive voltage to appear also at the anode of diode SD6 (F3). Since resistor R8(F2) and R11(F3) are both 47 K ohms, the voltage applied to $\mathrm{SD}(\mathrm{F} 3)$ will be approximately half of +15 , or $71 / 2$ volts, forward-biasing this diode also. With SD6(F2) forward-biased, signal from the F2 output of the tone generators can flow through SD6(F3), SD4(F2), and resistor R7(F2) to the 8-foot output bus.

The F2 tone is prevented from reaching the 16 -foot output bus associated with keyswitch F3 because the $71 / 2$ volts appearing at the junction of SD6(F3) and SD4(F2) is also applied to SD4(F3), and reverse-biases this third diode.

Clicks and popping noises generally associated with audio switching are prevented by the capacitor on the keyswitch line; this capacitor must charge before any diodes can switch. The click caused by the mechanical switch dies out before the capacitor charges enough to allow signal switching.

Additional diodes are used to control the attack and decay characteristics through panel-mounted stop switches. They switch additional capacitors and resistors in and out of the keying circuits, to control the time delay between keyswitch action (either opening or closure) and actual signal switching. In addition, they offer the possibility of imitating percussion instruments, by routing the keyswitch action to special control circuits and taking the outputs of these circuits to control signal-switching diodes. With the percussion option, sounds such as those of the piano, guitar, and similar instruments can be created.

Chimes. For chime tones, three additional keyswitches are added to 28 keys of the swell manual keyboard. When "chimes" are selected, these keyswitches are connected in parallel with the switches of other keys, so that when the F3 key (for example) is
(Continued on page 92)

The Baltimore Light, once diesel-powered, receives its atom-powered generator (top photo). The cutaway view of the reactor (middle-left photo) contains 20 pounds of strontium titanate pellets in 14 circular cells-enough for ten years of service. The heat generated from strontium-90 pellets is converted to electricity by 120 pairs of thermocouples.

The pile that powers the light is radiation proof and tamperproof but a warning is nevertheless posted (middle-right photo) in case of unwary trespassers. Coast Guard officer inspects pile (bottom photo) regularly for stray leakage with radiation counter.

Radio-TV Experimenter

BALTIMORES атом. powered

Baltimore has a reputation for pioneering with new lighting devices. In 1817 it was the first American city to illuminate its highways with the new-fangled gas. Now it is the first city to have an atom-powered lighthouse to light up its "Highway to the Sea"-Chesapeake Bay.

The lighthouse, known as the Baltimore Light, is over half a century old and has been converted to run on atomic power by a urit developed and manufactured for the Atomic Energy Commission by the Martin Company's Nuclear Division. The unit, known as SNAP7B (Systems for Nuclear Auxiliary Power) is approximately the size of a trash can- $34 \frac{1 / 2 "}{2 / 3}$ high and $22^{\prime \prime}$ in diameter-that weighs 4600 pounds. It is fueled with strontium titanate, a safe form of strontium-90-a waste procluct of large nuclear reactors. The decaying radioisotope develops heat which thermocouples convert into electricity for the 6(1)watt Baltimore Light. This type of generators is designed to provide trouble free, longlasting sources of power for remote locations where refuelling and maintenance would pose severe problems, and for operating transmitters on space shots and satellites. The Baltimore Light is not a "remote" station, however, it has been provided with atomic power as a testing ground convenient both to the manufacturer and to the Coast Guard's Testing and Development Unit at Curtis Bay, Md. Eventually the atomic generator will be installed in some remote and inaccessible site where it will operate for ten years without attention.

YTou've read a lot about the possibilities of using laser-beam communications, but did you know that ordinary light could be modulated to carry messages also? You can set up a simple light-beam communications demonstrator in about half an hour and for less than $\$ 15$, and all the components can also be used for other experiments and gadgets later.

How It's Done. The basic techniques for light-beam communication consists of converting sound energy to electrical energy and then using the electrical energy to modulate a beam of light. The modulated light beam is picked up by a photocell, and converted back to electrical energy. The electrical energy serves to drive a speaker which produces sound energy at the receiving end of the apparatus.

The complete apparatus that is shown in the photos is intended for demonstration
purposes only, and will not work over long distances. To simplify construction two ready-made low-cost (\$3.75 each) transistor amplifiers were used, one for the transmitter and one for the receiver.

Refer to the photo of the transmitter setup, the schematic drawing and parts list. Although the photo shows only one 1.5 -volt bias cell in the transmitter's lamp circuit, experiments have proved that 3 volts worked better and two series-connected dry cells should be used. No need to observe polarity when connecting lamp bias cells. The reason for using the bias battery in the output-lamp circuit deserves mention. The bias battery sets a steady light level. This light level serves as a carrier for the audio signal from the amplifier just as radio frequencies serve as the carrier in a radio transmitter. Another reason for the bias is that the lamp will respond better to the amplifier signal when

LIGMT BEAM

Here's a Science Fair project easy enough to assemble

 without any help from your Dad-it's a sure-fire winner!
it is biased. The transistor-amplifier connections are explained on the data sheet that comes with the amplifier.

Putting It Together. In the actual setup, it is desirable to add a parabolic reflector to the lamp. The author used a reflector from an old flashlight and glued it to a lamp socket as shown in the photo.

The receiver employs a solar battery as a sensor whose output is fed to an amplifier that drives a loudspeaker. The solar battery is mounted in a mailing tube (for shielding against "light noise") that is pointed toward the lamp. The paper tube's diameter isn't critical-1 $1 / 2$ or 2 inches is fine. Length should be 8 to 12 inches. Cut two slits about $1 / 2$-inch apart and about 2 -inches long in the tube and bend down the resulting tab. Fasten the solar battery in the tube with cellophane tape as shown in the drawing with the tab replaced. Try reversing the solar

Block diagram for a simple light transmission system. No need for exotic lenses.

Paper tube from 8 to 12 -inches long serves as shield for photo cell-conserves gain.

All set up and ready to go! For Science Fairs, mount system on shellacked blocks.

PARTS LIST

2-Amplifier, 3-transistor (Lafayette 99G9039 or equiv.)
1—Microphone, crystal (Lafayette 99G6019 or equiv.)
2-5000-ohm volume control with switch
1-Socket, miniature screw-type pilot lamp
1—Pilot lamp, \#48
2-9-volt transistor battery (Burgess 206 of equiv.)
2-1.5-volt penlight cells (Size AA)
1 _battery holder for two AA cells
1-Reflector (See text)
1-Carboard mailing tube (See text)
1-2 $1 / 2$-inch speaker, 8-10 ohms (Lafayefte 99G6097)
1 --Solar battery (IRC B2M or equiv.)
Estimated cost: \$15.00
Estimated construction time: 2 hours
battery leads-output may be increased somewhat.

If you own an amplifier with sufficient gain, you may use it in place of one of the amplifiers but if it has too much power it may blow out the \#48 bulb.

Getting More Range. The arrangement described is for demonstration purposes and
(Continued on page 91)

Whether you're designing, servicing, or just experimenting with a semiconductor circuit, you've probably already learned via the expensive route that semiconductor junctions are capable of destroying themselves much more rapidly than are fuses.

Thus, for general bench work, an "instantaneous fuse" which would interrupt current flow before the speediest semiconductor could be capable of melting would be a handy device.

The Current Clamp will, within certain limits, perform this function. While it won't interrupt the current flow, it will clamp it to a pre-set maximum value, and will not permit current to exceed this maximum. If the technician chooses his maximum current setting wisely, the semiconductors won't be harmed by excessive input.

Putting It Together. Construction and operation of the Current Clamp is so simple that one can be put together in a few minutes for any particular application, though it's handy to have a wide-range unit on hand for instant use. The author's unit has a range of zero to 25 milliamperes (although the zero-current position is more likely due to a defective variable resistor rather than to design).

The schematic diagram of the Current Clamp and the photos show how the unit
can be constructed. The schematic diagram also serves to illustrate the how-it-works discussion below, essential to your ability to tailor one to fit any specific job.

Total parts requirements are two resistors ($\mathrm{R} 1, \mathrm{R} 2$), a voltage-reference diode (D1), and a transistor (Q1) capable of handling the maximum current flow.

The Current Clamp uses an inexpensive top-hat 750 -ma. $400-p i v$ silicon diode as its voltage reference, and a 2N1302 npn transistor. The Clamp's circuit works equally well with 2 N 107 and other experimentergrade units so long as they are capable of passing the desired current and dissipating the necessary power. The 2 N 1302 will pass 300 ma . and is rated to dissipate 0.3 watt, more than ample safety margins for a 25 ma . Clamp.

Use of the silicon diode (D1) as a voltage reference is not merely an economy measure. It's fairly well known by now that these diodes have a relatively stable 0.5 to 0.7 volt forward drop, and by choosing such a small reference voltage the Clamp has much less effect on the circuit with which it is being used than would a conventional current generator with a higher reference voltage. To explain the reasons for this, however, we must first discuss briefly the manner in which the Current Clamp operates:

How it Works. Current flow in the load

PARTS LIST

D1—750-ma., 400-PIV silicon diode (GE 1 N539 or equiv.)
Q1-2N1302 fransistor (see text)
R1-500-ohm, 5-watt potentiometer (Mallory Type VW or equiv.l
R2-1,800-ohm, $1 / 2$-watt resistor
Misc.-Perforated phenolic board, flea clips, wire, solder, efc.

Estimated costs \$3.00
Estimated construction time: 1 hour
(the circuit connected to the "output" terminals) must be through transistor Q1's collector lead. By the beta-multiplication effect inherent in transistors, the largest part of this current must flow through the collec-tor-emitter path; very little can flow in the base circuit. Thus, most of the load current flows through Q 1 's emitter lead.

Resistor R1 is in this lead, and the current flow through it develops a voltage which is proportional to the current. With an npn transistor, the emitter will become more positive than the source (at the "input" terminals).

The transistor's base, meanwhile, is held at a fixed potential which is more positive than the source by the amount of voltage dropped across reference diode DI.

So long as the base remains more positive

Schematic diagram for the Current Clamp shows output current passing through Ql's emitter-collector circuit. Graph at left shows current limiting for 1.5 -volt inptt.
than the emitter, Q1 is biased to saturation and the flow of current is impeded only by R1. Since a typical value for R1 is less then 100 ohms, this offers little restriction :o current.

When the voltage developed across R1 drives the emitter positive to the base, however. the transistor is cut off by the resultirg reverse bias and current flow in the load ceases to be as described. Instead, load current is restricted to a value which holds the emitter voltage just exactly enough negative to the base to permit that amount of current to flow.

Feedback. The action is an "infinite-negative-feedback" affair, somewhat akin to the clamping of grid bias in a cathode follower vacuum-tube circuit. As more current attempts to flow, the transistor bias acts to reduce current. and vice versa. The result is that load current is restricted to a fixed value, even if the "output" terminals should be shorted together.

Note that all load current (or at least all but $1 /$ beta of it) must flow through R1 to

Top-current clamp set up to fuse 3-volt supply from potentiometer load. Bottomshort across pot load should drain batteries. Note meter in photos indicates no current increase. Current Clamp is doing its job.

develop the control voltage. This means that the output resistance of the Current Clamp, before it goes into action, cannot be less than the value of R1. As a matter of fact, it's equal to $R 1+R_{s a t}$ where $R_{s a t}$ is the "saturation resistance" of the transistor. Since typical values of $\mathrm{R}_{\mathrm{sa}_{\mathrm{a}}}$ are usually well under one ohm, for all practical purposes the output resistance can be said to equal R1.

This is why the low-cost silicon diode with its low reference voltage is a key factor in making the Current Clamp useful. The value of R1 is chosen, or adjusted, so that at the desired clamping current level it develops a voltage approximately equal to the reference voltage. To develop 0.6 volts with a current flow of 100 ma., just for an example, requires a value of 6 ohms for R1. Were a more expensive higher voltage Zener diode used as a reference, it might require as much as a 6 -volt drop. This would raise the value of R1 to 60 ohms. A 6 -ohm added impedance in series with the power supply has far less chance of upsetting circuit action than would a 60 -ohm addition.

The rectifier-type diode does, however, have one major disadvantage which must be admitted. Its voltage drop varies with the current flow through it. This means, in practice, that a value for R1 which would be correct to clamp at 25 ma . with a 3 -volt

Front view (top photo) and rear view (bottom photol of the Current Clamp showing location of parts and method of assembly. Entire unit can be installed in a plastic case.

supply would not be correct for clamping at 25 ma . with a 30 -volt supply. The variations can be minimized by running a fairly stiff current through the diode, on the order of 100 ma., but it has been found more convenient to run from 1 to 10 ma . through the diode and to simply live with the variations in setting of R 1 .

Values shown in the schematic diagram are those employed in the wide-range unit designed by the author; for use in other ranges of either current or input voltage, make R1 equal to the diode voltage divided by desired maximum current, and R2 equal to 100 times the input voltage. Units are
(Continued on page 94)

By C. M. Stanbury II

©panish language broadcasts from the Voice of America, WRUL and the mysterious Radio Americas are well known to every SWL. But did you know that at least four privately owned hroadcast band AM stations carry on a constant battle with the Castro regime? Not only does this quartet help counteract the Communist island's broadcast monopoly but they also spread Castro's jamming facilities paper thin.

Miami's WGBS. Possibly the most important station in this war of ideas is WGBS at Miami. By day WGBS carries regular English language programs and is a CBS affiliate but starting at 1:00 AM and con-
tinuing throughout the wee hours of the morning, it serves as an integral part of the Radio Cuba Libre network. In fact WGBS is probably the most strategic transmitter in the whole net. Its potent 10 kilowatt directional signal on 710 kc completely blankets Cuba. So effective is WGBS that it was one of the very first stations to he jammed by the Castro regime. WCiBS own ID slogan is Redio, Miami. Its transmitter, antenna and ground system are located in the Everglades, Florida's famous tropical swamp.

WKWF and WWL. Radia Cuba Libre is sponsored by the Cuban Freedom Committee which has its headquarters at 1737 H Street N. W., Weshington, D. C. and is headed by Representative Roman C. Pucinski of Chi-

cago. In addition to WGBS, Radio Cuba Libre is also carried by two other private U.S. broadcast stations. WKWF on 1600 kc . at Key West is a little closer to Cuba but has less power. WWLM 870 kc . owned by Loyola University at New Orlcans is of course further from the communist island but is blessed with a mighty 50 -thousand watts. WKWF is now heavily jammed and there is some jamming on the 870 kc . spot too. Radio Cuba Libre is also rebroadcast during the evening hours by several Latin American stations including the well known short-wave broadcaster Radio Santo Domingo.

Wmie. Meanwhile another Miami station carries a myriad of less spectacular rebel programs. This is WMIE on 1140 kc . During the daytime its Spanish language programs are intended for the Cuban refugee population in Miami, a strictly commercial venture. WMIE estimates that this market is worth to its advertisers 5 million dollars a week. At night, and all night, WMIE's 5 kilowatt output is beamed directly toward Cuba and thus it becomes yet another station jammed by Castro.

Possibly the best known WMIE revolutionary program is "El Periodico del Aire" (The Newspaper of the Air). This was the name of a well known Habana broadcaster before the Communist takeover. In Habana

Three views of Radio Miami: top left, WGBS transmitter building; lower left, studio building in downtown Miami; above, directional antenna array beamed at Castro land after 0100 hours.
it operated CMCK on 980 (still on the air but now under red control of course) and COCO which some of our veteran SWL readers may recall. WMIE's version of EI Periodico del Aire is directed by Juan Amadōr Rodriguez, a Cuban rebel leader.

Others to use WMIE include Arturo Artalejo (a noted Cuban news commentator), La Voz del Pueblo, and during the Cuban Missile crisis, the Voice of America itself. In fact, it was immediately after this confrontation that WMIE decided to go on a 24 hour a day basis and otherwise drastically increased its Spanish language schedule.

Success with Words. Is the campaign waged by WGBS, WKWF, WWL WMIE successful? Do they really help fight Communism and undermine Castro's dictatorship? The answer must be a resounding yes. If not the reds would never expend so much of their radio facilities and technicians in an effort to jam these transmissions. Further, so far as we know, these are the first stations anywhere in the world which are wholly under private ownership that have been jammed by a foreign power. Even more startling, we find Castro puts out more effort jamming this foursome than he does blocking Voice of America BCB transmitters in Florida. Needless to say, this is of great aid to the VOA. And incidently, we wonder how Habana explains all that jamming.

RAYMER MODEL 471
 Background Music

 SCA Adaptor

 SCA Adaptor}

How would you like to hear the phantom signals of the FM band? FM stations which in many instances play hour after hour of pleasant "wall-to-wall" type music with few, if any, interruptions by an announcer extolling the virtues of the station or Vat Aged Snake Oil. You think we're pulling your leg? Not so. There is such a thing as FM phantom signals.

In many communities the only way an FM station can stay in the black is by selling "background music"; soft, unobtrusive arrangements intended for banks, restaurants and fancy apartment house elevators. This music is transmitted simultaneonsly with the regular program and is called the SCA-short for Subsidiary Communications Authorization.

What Is SCA. The SCA signal deserves the description phantom hecause it's there but it's not there. To your regular FM or stereo tuner the SCA signal doesn't exist; you'll never know if a station is using SCA. But tune across the band with an SCA receiver and the opposite happens; the regular FM stations disappear and nothing is heard until the music of an SCA station suddenly "pops in."

While SCA stations rent receiving equipment, you can have the pleasure of continuous music in your home without paying a rental charge. All you need do is connect an electronic gadget called the Raymer Model 471 SCA Adaptor to your present FM tuner and voila, wall-to-wall music. Of course, you might say, "Who needs it. I've got a terrific record collection." But it's ten to one you don't have more than one or two records with SCA type music. Remember we said SCA music was unobtrusive-no loud crescendos, no soaring violin slides

fading into the noise level. SCA music is specially arranged as "background music" for eating, working or just plain resting.

Hook Up. The Raymer Model 471 Adaptor connects between the tuner and the amplifier, and while it has no on-off switch other than for power, it doesn't interfere with normal tuner operation. The adaptor's input jack is connected to the tuner's multiplex (MPX) output jack: the jack provided on late model monophonic tuner for the connection of an MPX adaptor for FM stereo. The adaptor cannot be connectec to the tuner`s AF output hecause the built-in de-emphasis which compensates for the high frequency boost (pre-emphasis) applied at the transmitter also attenuates the SEA signal.

The adaptor's output is then connected to any amplifier auxiliary input. This arrangement allows you to receive regular FM prograns with the amplifier mode set to

Semiconductor circuit offers long term troublefree performance. Two jacks on rear penel connect to FM tuner and amplifier input.

If your tuner does not have a multiplex jack, you will have to provide your own by tieing into the FM tuner audio oulput circuit immediately before the de-emphasis network. How it is done schematically is shown above for the ratio detector and below for the discriminator detector. Actual detector circuits may vary from unit to unit, but R1-C1 network is always used to provide de-emphasis effect.

tuner and SCA signals when the amplifier is set to auxiliary input.

Since the difference between a tuner's MPX output and the AF output is only the de-emphasis network (actually a resistor and capacitor) it is a simple matter to add an MPX output to mono tuners not so equipped. The schematic diagram shows the two typical FM detectors-the ratio and discriminator types. Regardless of the actual detector circuit the de-emphasis network consists of R1 and C1 (Note that it is a low pass filter; the higher the frequency the greater the attenuation.) At point " X ", the input to the filter, the signal has no de-emphasis and an MPX output is provided by connecting point " X " through a $.05 \mathrm{MF} / 500$ vdc capacitor to a jack which can be installed on the rear apron. Check your tuner very carefully, ours had a test MPX jack hidden on the MPX sub-assembly intended for the manufacturer's test equipment during alignment.

Checking it out. Using the Model 471 Adaptor couldn't be easier. Just tune in a station which is known to broadcast SCA and connect the adaptor to the amplifier. You'll hear some sound-usually distorted. Then simply adjust the fine tuning control
on the adaptor's front panel for best sound and sit back and enjoy the music. If you aren't sure which stations transmit SCA just connect the adaptor and tune until you hear the signal; adjust the tuner for best sound and then give it a final touch up with the fine tuning.

The sound quality delivered by the Model 471 Adaptor depends to a large degree on the tuner. If the tuner has a wide-band IF response the sound is pretty good-not hi-fi because the SCA transmission itself isn't hi-fi. If the tuner has a narrow response, thereby attenuating the SCA signal before it ever gets to the adaptor, the overall sound quality will be best described as decentjust about passable for background music.

One very good feature of the Model 471 Adaptor is the positive-acting noise squelch circuit which eliminates all hash during intervals between music selections. Also, the adaptor had absolutely no measurable crosstalk, that is, the main FM channel does not ride through and mix with the SCA broadcast.

Physically the Model 471 adaptor consists of transistorized circuits on two printed circuit boards. One board contains the user adjusted oscillator (fine tuning) and the second board contains the SCA detector. The adaptor has been simplified to a minimum number of circuits-high-price commercial quality is not needed in the home-and in conjunction with transistors and PC boards the adaptor should give long term troublefree performance.

Overall handling is very easy, and it takes but one or two tries before you're an expert in tuning in SCA signals.

While we derived considerable enjoyment from the Raymer Model 471 SCA Adaptor, and we suspect you will too, there is a note of caution. Before you run out to purchase an adaptor make certain you can receive an SCA station. Most large cities have at least one SCA station; but if yours is a small town with only one or two FM stations it is quite likely the only thing the adaptor will deliver is absolute silence. One positive way to find out is to call your local FM station business office and ask them whether they have an SCA service or not.

If you are interested in the Raymer Model 471 SCA Adaptor or would like to know more about other Raymer products, write to Trutone Electronics, Inc., Dept. RTE, 14660 Raymer Street, Van Nuys, California. The Model 471 costs $\$ 64.50$ postpaid.
kLh mOdel elghteen
All Transistor FM Stereo Tuner

The KLH Model 18 tuner is an all transistor stereo tuner which is built as transistorized equipment should be builtextremely small. Extend your fingers, place the KLH on your palm and it just about covers the hand. Place the KLH on a bookshelf and you still have room for books-no dangling halfway off the shelf. Stand it sideways and it takes up less space than the collected works of Shakespeare.

But though it is compact the Model 18 has all the features needed for good stereo reception; nothing has been left out. The tuning is the more or less "instrument type" single dial with a very smooth vernier drive; and the calibration is excellent. It is almost possible to pre-set the tuning to a desired station before the tuner is turned on due to the dial's accuracy across the entire band. A full-time stereo indicator is provided which also doubles as a marginal station indicator. Whether the mode switch is set to mono or stereo the lamp lights if a station is transmitting stereo. If the stereo indicator flickers

on a stereo broadcast it means the signal is marginal and will be subject to considerable noise. The noise can then be eliminated by orienting the (indoor) antenna until the lamp stays on full-time or an antenna booster amplifier should be switched in. An SCA filter is provided to remove the "hash" which is heard when an FM stereo station also broadcasts SCA.

The KLH is provided with one of the best tuning indicators-the center tuning meter. This meter does not indicate relative signal strength, rather it insures that the tuner is set to the received station's exact center frequency. While modern wide-band tuners do an excellent job at receiving mono even if the station is slightly off-tune, for best stereo reception the tuner must be set to the exact "center frequency." On the KLH Model 18 you simply tune in a station until the tuning meter pointer is at the center scale mark, and you are assured of optimum stereo reception. Two audio outputs are provided, a fixed level output and volume controlled out-

A real "bookshelf" component —the KLH Model Eighteen FM tuner fits on a standard eightinch shelf without overhang. Note "instrument type" tuning dial with smooth vernier drive - calibration is excellent.

How does KLH make it so small? The multiplex circuit is mounted on the top plate and folds over the chassis when the plate is installed. Note the extensive use of shielded cables and cover-plate metal shields-neatness helps.
put. Either one can be used; it's just a convenience which allows the user to control the volume at the tuner or at the amplifier.

On Antennas. The tuner comes equipped with two antennas, a plain section of wire attached to the antenna terminals and a moulded folded dipole. It should be pointed out that KLH does not recommend either of these antennas. In a rather good, simplified antenna section, KLH explains that best performance is obtained with a directional antenna and they specifically suggest several satisfactory "outdoor" antennas. However, KLH understands that not everyone can employ an outdoor antenna so they provide the two indoor antennas, with good instructions on how to use them, for the audiophile cursed with an uncompromising landlord.

How It Checked Out. In the performance department the KLH Model 18 is outstanding. With the antenna disconnected there is absolutely no noise from the tuner, no hum and no "transistor hiss." In fact, you cannot even tell the tuner is on; it is probably the quietest piece of hi-fi equipment we have heard. If you've been concerned with those persistent rumors that transistor tuners have a "built in hiss" forget it; maybe the first attempts at transistorizing tuners resulted in hissing, but not anymore. The same goes for those rumors that transistor tuners overload on strong signals. On the strongest of signals, even when we used a booster to deliberately force the signal to an overload level, the

KLH did not overload-there was no cross modulation, self oscillation or distortion normally associated with overload. In fact, the KLH was even able to receive cleanly two strong adjacent signals which normally cause overlay on some tube type tuners.

The sound quality is magnificent, about the cleanest we've yet to hear; even flutes at high modulation levels were reproduced without stridency. And of course, the absence of any noise produced what has often been called "transparent sound." The stereo separation is excellent, if not outstanding.

Even the AVC (automatic volume control) is good. With the rare exceptions of extremely weak stations, tuning across the FM band did not produce thundering crashes interspersed with barely audible sound. Nearly all stations were at equal volume.

From its smooth as silk sound quality to its high styling (with oiled walnut cabinet) the KLH Model 18 must be rated at the very least excellent. Even the audio purest who spends his entire life looking for "better sound" would find no fault with the Model 18. In fact, this tuner deserves a better name than the Model 18-Mighty Midget would be more to the point. Priced at $\$ 129.95$, the Model 18 offers top quality performance in the moderate-price audio showcase. For more details and complete specifications on the Model 18 write to KLH Research and Development Corp., Dept. VC'-1, 30 Cross Street, Cambridge, Mass. 02139.

What's Been Lab-Checked

Many readers write to us asking whether we have reviewed a particular high-fidelity component or not in Radio-TV Experimenter. To answer these questions and many more that may come, the list below gives the component reported on and the issue in which it appeared.

- Harman-Kardon SR-300 Transistorized FM/ Stereo Receiver, April-May, 1965
- Bozak E-300K-Urban Enclosure Kit and Bozak B-207A 2-way Speaker, April-May 1965
- Elpa PE-34 Manual Stereo Turntable, AprilMay, 1965
- Heathkit AR-13A AM/FM 64-watt Stereo Receiver, Feb.-March, 1965
- Electro-Voice Coronet Speaker System Kits, Feb--March, 1965
- AR XA Manual Hi-Fi Turntable, Feb.-March, 1965
- Knight-kit KG-870 Stereo Amplifier, Dec.-Jan., 1965
- H. H. Scott LT-110B Stereo-MX Tuner, Dec.Jan., 1965
- EICO 2200 FM-Multiplex Stereo Tuner, Oct.Nov., 1964
- Dynakit SCA-35 Stereo Control Amplifier, Au-gust-Sept., 1965

HCWMLABCHECK

KNIGHT-KIT KP-70
Record/Playback
Stereo Preamp

KNIGHT KN-4000A

4-Track Stereo
 Tape Transport

Either sound-on-sound or echo effects are obtained by activating a single switch. No need for juggling of connecting cables for sound-on-sound or echo since all circuits are pre-set by the single selector switch.

Separate front panel jacks permit either single or dual plug stereo phones to be used (though they must be the crystal type). This arrangement also permits the use of mono phones when monitoring sound-onsound recordings. A panel switch determines whether the phone monitor circuits are switched to the signal source or the playback head (on three head transports).

Similarly, the two VU meters indicate the source or playback levels; their function being determined by the phone monitor switch. An extra feature is the use of the V'U meters to indicate the bias currents, which while of no extreme importance, does allow the audio purist to keep track of any changes in bias current caused by component aging.

On the electronic side the KP-70 is designed to be used with virtually any tape transport. Either Knight's matching stereo transport, stereo transports of other manufacture, and even old reliable mono-transports which have been upgraded with stereo

Two large printed circuit boards contain most of the components in the KP-70 preamp.
heads. All critical head matching circuits are user adjusted; this includes the bias and erase currents, the high frequency equalization and the recording level. Provision is even made for matching low, medium and high impedance heads. (An optional erase head is available for Sony tape transports.)

Performance. Of course, features are really second to performance, for what good are features if the sound doesn't please. With the KP-70 you've got no worries because the electronic flexibility allows almost precise matching to any brand of tape. For example, while Knight's specifications hold true for the tape they suggest (Scotch 111) the same bias and high frequency adjustments might result in poor high frequency performance from tapes of other manufacture. (This is not unusual, fixed bias tape recorders generally deliver optimum performance with specific tape brands or types. In fact, the KP-70 gives superior performance with 1.0 mil tapes, and though not mentioned in the instruction manual Knight suggests the use of "thin" tape.)

But the KP-70's electronic flexibility allows the preamp to be matched to virtually any tape (or heads). The curves shown are for white box tape, and even we must admit they look good--they sounded good, too.

Alignment. Knight gives two procedures for adjusting the bias and erase currents: instrument and by "ear." We found the instrument alignment delivered poor performance on tapes other than Scotch 111 and we do not recommend its use. The "ear" alignment is more useful. Knight provides a special test jack and adapters, and the user simply adjusts a few controls for specific meter readings. While this technique was reasonable, it still left a lot to be desired in the way of top quality sound.

We preferred our own alignment technique
which appeared to allow more flexibility in the selection of tape brands. Select a quality tape brand and starting from the full counterclockwise position adjust the bias control for maximum tape output while recording a 400 cycle signal 10 db under maximum recording level. (As the bias current is increased the tape playback output will also increase.) At some bias setting the tape output will start to drop; keep advancing the bias current until the output drops 1 to 4 db . If the bias control locks-up before you can go through peak output back-off the bias current till the output drops about 4 db . The bias metering will tell you whether the current is increasing or decreasing. Next, feed in a 15 kc . signal (at $71 / 2 \mathrm{ips}$) or a 10 kc . signal (at $33 / 4 \mathrm{ips}$) at the same -10 db level and adjust the high frequency equalizers so the high frequency playback level is within 3 db of the 400 cycle reference. If you cannot obtain sufficient

Typical response curves for the Knight-kit KP70 record/playback stereo preamp are shown for both $71 / 2$ ips and $33 / 4 \mathrm{ips}$. Actual response curves for individual units will vary slightly and will also depend on particular tape, bias adjustment and high frequency boost adjusiments. Always use quality tapes.

high frequency equalization at the $71 / 2 \mathrm{ips}$ speed set the equalization to maximum and very slowly adjust the bias current for flat playback response. While this adjustment may appear complex keep in mind that this is how professionals compensate for different tapes-you can pull this trick with few budget recorders.

What We Heard. Overall sound quality ranked high, with good signal to noise ratio (low hiss level). However, there was one peculiarity which should be noted. While not heard when recording program material, test tones at about 15 kc . resulted in low fre-
guency beat notes, which though at lun levels, were clearly audible. We feel this was due to the bias oscillator frequency which in our particular unit was below specs. Checks with Knight certified the bias frequency is normally higher, thereby placing any beats outside the audio range and outside the preamp's frequency response range. Should this occur in your unit the bias oscillator frequency can be changed by repositioning the oscillator coil slug: though the

Even though most components are on circuit boards, considerable wire and shielded cables are used to interconnect all audio circuits.
adjustment requires a signal generator and an oscilloscope. However, keep in mind that the beats are inaudible with normal program material.

The KP-70 is available wired ($\$ 139.95$) or in kit form ($\$ 89.95$). While the kit is quite complex. printed circuit boards for most of the electronics and card indexed resistors do reduce the possibility of wiring difficulties. While there are no really jammed-packed corners. there is just no room for sloppy layout or solder joints. It is best to try your hand at wiring an amplifier or tuner before taking on the KN-70. With one kit under your belt, the KN-70 kit will be a snap and an enjoyable experience.

Knight KN-4000A. The Knight KN4000A Tape Transport ($\$ 129.95$) is the matching unit for the KP-70 preamp. It differs markedly from most budget equipment in that three separate motors are used: one for supply reel, one for take-up and one for capstan. (This is a lot better than one motor doing everything through a series of belts and pulleys; there's less to go out of wack.) Also, there are none of the familiar brake mechanisms. Dynamic braking is developed by feeding DC to the take-up and supply motors. The result is a very gentle braking action. Even stopping from the notably high rewind
speed places no undue strain on the tape. The transport handles even the extra-thin (extended play) tapes without difficulties such as stretch. Rewind time is about 45 seconds for a 7 inch 1.5 mil reel.

A shut-off switch is provided which removes power from the take-up motor when the tape runs through. Unfortunately, the switch does not work for rewind, and the high speed rewind could use an automatic shut-off.

The transport comes complete with three heads, a digital counter of the reset type, tape lifters and piano-key controls-all necessary for 4-track stereo operation.

Speed constancy at both $71 / 2$ and $33 / 4 \mathrm{ips}$ even at the end of the reel is excellent. Wow and flutter is inaudible.

Our only gripe with the transport is that no mounting base is available-you've got to make your own or use an optional portable carrying case ($\$ 24.95$) designed to hold both the transport and preamp. An optional metal case ($\$ 4.95$) is available for the preamp.

Roundup. While the KP-70 and the KN4000A are available as separate units from Allied Radio Corp., 100 N. Western Avenue,

Note three motors and large capstan stabilizer weight. Finger points to power supply which supplies DC for dynamic tape braking.
Chicago, Illinois 60680, they are sold as a package unit ($\$ 209.90$ with preamp in kit form) at a slight savings over the unit prices. Frankly, the Knight KP-70 preamplifier and $\mathrm{KN}-4000 \mathrm{~A}$ transport combination is the hest budget buy available to audiophiles today. You would have to more than double the price before you can purchase comparable tape setups of equal quality and performance.

PROPAGATION FORECAST

June-July, 1965

By C. M. Stanbury II

While all areas of the world can be heard. sometimes with difficulty throughout most of the day, short-wave reception from each continent has its peak listening period lasting from three to twelve hours depending on the continent and your listening area. For this edition of Propagation Forecast, we have added a table, Peak DX Periods, showing these approximate DX listening periods. It should be noted, however, that fair European short-wave reception will be experienced most of the time on the East Coast and a similar situation applies with Asian shortwave reception on the West Coast.

Good DX hunting.

Peak DX Periods

Area	Local Time-North America	
	Eastern	Western
Europe, North	1200.2400	0900-2100
Africa, \& Near East	-	
Africa	1500-2400	1200.2100
Sahara)		
Asia (except Near East)	0300-1200	0000-1200
South Pacific	0000-0600	2100-0900
Latin America	2000.0100	1900-2200

To use the table put your finger on the region you want to hear and log, move your finger to the right until it is under the local standard time you will be listening and lift your finger. Underneath your pointing digit will be the short-wave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as poor second choices. Refer to White's Radio Log for World-Wide Short-Wave Broadcast Stations list.

Make a master test tape for your tape machine! Check its head alignment and frequency response!

If you ever get a chance to spend a few days hanging around a professional recording studio one of the first things you'll notice is how often the tape recorders are checked for frequency response. And if you stop to ask questions you'll discover that the technicians are primarily interested in the high frequency response. For even if the heads are worn to a frazzle and has a coating of dirt this thick the recorder can do a good job on the low and mid-range frequencies. But get just a little headwear, or let the alignment (head azmuth adjustment) change ever so slightly, and that golden voiced soprano sounds like she's singing through a pile of straw. In fact, the less costly the recorder, the greater the sensitivity to head defects. Lower the tape speed from the professional's 30 or 15 ips to the hobbyists $71 / 2$ and $33 / 4 \mathrm{ips}$ and head alignment becomes extremely criticalparticularly so with 3 head recorders where the playback head must be in exact alignment to the record head.

All tape heads wear and go out of alignment, some faster than others; so for optimum frequency response both head wear and alignment should be checked frequently. While a technician generally uses somewhat expensive test equipment and alignment tapes when adjusting tape recorders, you can do a creditable job-a darn good jobwith the Tape Tester, a low cost (less than $\$ 20$) tape recorder test set specifically designed for the tape fan and music lover with a minimum knowledge of tape recorder electronics.

What It Can Do. With the Tape Tester you can check-out your recorder quickly and conveniently, with a minimum of fuss and bother. It tells you if your head needs alignment and when they should be replaced. It lets you make a master test tape (like the pros use) so you can periodically check the recorder against original performance.

The tester contains a two tone signal generator and an adjustable output meter. The generator produces a 1 kc . reference signal and an 11 kc . alignment signal at the same level as the reference. Both signals are adjustable to 100 millivolts, suitable for either high or low level inputs. The output meter provides an amplifier termination and indicates the recorder's playback performance. The ratio between the two test signals as measured on the output meter (or on the recorder's built-in playback meter if it is so equipped) indicates head wear and misalignment; and the same two signals are used to align the heads.

Construction. The model shown is built on the main section of a $3 \times 4 \times 5$-inch Minibox. Parts layout and lead dress aren't critical as long as they're not sloppy. But take extra care that all components are tied down tightly-the unit is useless if the signal level drifts or pulsates.

Function/power switch SI can be any

Schematic diagram for the Tape Tester-keep S1 set at off during playback of test tape.

Inside view of the Tape Tester is uncluttered and easy to wire. Note that VU meter circuit is physically isolated from the oscillator.
four pole triple throw; we have used the model specified in the parts list-even though it has extra contacts-because it is small and low in cost.

Frequency determining capacitors C2, C3, C4 and C5 don't have to be the precision type; any standard brand 10 or 5 percenters will do. Just be certain not to use salvage or "reject" capacitors. C2 and C3 determine the

[^6]high frequency output and the values indicated will produce about 11 kc . which we have selected as an effective value for most hobbyist recorders. If you desire a slightly higher frequency, say 12 kc ., use a .01 and .001 mfd . respectively. If you desire an even higher frequency, say 15 kc ., you'll have to do a little experimenting as the lead dress will affect the output frequency-start with .008 mf and .0008 mf and add small padders until you hit 15 kc .

Regardless of your choice for C2 and C3 they are connected in-circuit as shown, they have no effect when the 1 kc . capacitors, C4 and C5, are switched into the circuit.

The terminal strip is mounted directly on LI and is retained by Ll's mounting screw. Warning:-don't substitute for the specified LI.

The high frequency level adjust, R3, is the subminiature type and is mounted inside the cabinet to insure its adjustment is not accidentally changed. It is mounted to an \mathbf{L} bracket which can be made from a straightened $1 / 2$ inch wide cable clamp.

Keep the leads to Q1 short and use heat sinks, such as an alligator clip, on each lead when soldering.

R5 is a 5 or 10 watt resistor equal to the recommended external speaker load. For example, if your recorder specifies an 8 ohm external speaker use a 7.5 ohm resistor (nearest value to 8 ohms).

Connect the VU Meter, M1, directly to R6 as shown; disregard the instructions and resistor packed with the meter.

9 V vs. $221 / 2$ V. Battery B1 is selected after the wiring is completed. First, try a standard 9 -volt transistor radio battery (any

Front panel view of Tape Tester showing location of controls, VU meter and interconnecting jacks. Decals add pro look to assembly.

R3 is mounted to the cabinet with on L bracket made from straightened cable clamp.
type). If you can obtain both the 1 kc . and 11 kc . signals all is okay, install the battery. If you can obtain only the 11 kc . signal use a $221 / 2$-volt transistor radio battery (again, any type). While the tester will always work with a $221 / 2$-volt battery it pays to make the test because 9 -volt batteries are less than onehalf the price. Miniature batteries such as used in transistor radios will fit a standard penlight battery holder, as shown in the photograph.

Adjustment. Connect a high impedance level indicator, such as an AC VTVM, to J1 and set S1 to 1 kc . Advance level control R4 to the mid-position and carefully note the indicator's reading. Then set S1 to 11 kc . and adjust high frequency level control R3 until the 11 kc . output is exactly equal to the 1 kc . output. Switch back and forth a few times to make certain you have the proper adjustment.

Using the Tester. Maximum convenience is obtained if a Master Test Tape is made when the recorder is new, has seen only a few hours of service, or has known good heads in perfect alignment. (See the special service note at the conclusion of this article on how you can align a recorder with a combination record/playback head without the need for an alignment tape.)

Connect J1 to the recorder's input jack, set R4 to off, and set the recorder's gain control full open. Then set S1 to 1 kc . and

faite fecling

adjust R4 until the recorder's level indicator reads -10 db . If your recorder uses neon lamp indicators set R4 so the normal lamp just flashes; make certain the peak lamp doesn't flash. On recorders equipped only with a peak level indicator-such as a "magic eye tube" or lamp-set R4 for a level 10 db below the level needed to close the eye tube. (The signal level must be about 10 db down to allow for the recorder's pre-emphasis applied to the high frequencies).

Record about 30 seconds of 1 kc ., then kill the tone for about 10 seconds and then record about 2 minutes of 11 kc . This tone sequence will be the master test tape only for your recorder.

Set the recorder's volume control to normal, connect J2 to the speaker output jack, and play the tape. When the 1 kc . signal comes through adjust R6 so M1 indicates " 0 " VU. When you see MI collapse to zero-the 10 seconds "dead air"-you know the 11 kc . tone follows. When MI indicates the 11 kc . signal adjust the recorder's tone control (s) for " 0 " VU-the "flat" setting. Using grease pencil or tape mark the tone control's "flat" position. You are now set to test the recorder quickly and simply at all times.

For example: You purchase a pre-recorded tape and the highs are missing completely. Set the tone control to the marked position and play your test tape. If the two tones playback within a couple of db your machine's okay, the pre-recorded tape is at fault. But if the 11 kc . signal plays back several db below the 1 kc . reference the head(s) is probably out of alignment. Naturally, if realigning the head doesn't restore high frequency performance the head is probably worn. If yours is a two head recorder, aligning for playback automatically insures record alignment since the same head is used for both functions.

But if yours is a three head recorder alignment is slightly more complex, both the record and playback heads must be aligned to each other. First, play the master test tape and align the playback head. Connect J 1 to the recorder and feed in the 11 kc . signal about 10 db below maximum recording level. Then adjust the record head alignment for maximum simultaneous playback output; the two heads will now be aligned to

Tape head alignment can be checked, using a Q-Tip or finger to skew the tape up and down directly in front of playback head. If highs increase, then head realignment is required.
each other. If after alignment, the 11 kc . response is still down, examine the heads for excess wear.

Of course, high frequency loss is not always due to worn or misaligned heads, there are such things as electronic breakdowns, but it is rare for an electronic defect to affect only the high frequencies. A more common fault is the bias adjustment. At the slow tape speeds used by home recorders, a slight change in bias current can translate into a large change in the high frequency response. Also, a given bias current can produce different output levels and high frequency performance among tapes of differing manufacture. In fact a given bias current can produce varying performances between various "lines" of the same manufacturer. It is perfectly possible that even with good heads in perfect alignment one tape will deliver a "flat" frequency response while another gives reduced output and high frequency response.

While most recorders have provision for adjusting the bias for optimum response and output, the adjustment usually requires the services of a technician. However, with the Tape Tester you can test various tape brands to determine which performs best on your recorder. With the heads in perfect alignment, record the two tones on several brands
(Continued on page 91)

Designed for the bachelor's apartment, kid's room or even the living room this quality-fi stereo record playing system can be assembled by most anyone

Syou think that a good stereo is expensive. Well, if you have an open mind, this article will show you just how inexpensively a good stereo system can be constructed. If you would like a couple of watts for that quiet living room late at night -or you have a small apartment that could use some real fine music . . . the Stereo Compact is for you. The only things you need are the use of a friend's power saw for fifteen minutes, a little glue, a soldering iron, a pair of pliers, a screw driver, wire cutters, and something less than $\$ 50.00$. The Stereo Compact is built from commercially available amplifier modules and standard parts available from any electronic supply store and mail order houses. The Compact compares favorably to any commercially manufactured item costing three times as much. It has excellent bass response and does not distort at low volume. Best of all, if you should drop off to sleep while it is playing, it shuts itself off completely-amplifiers, power supply, and all.

This system is adaptable to almost any
kind of place. It was built out of scrap plywood and covered with "Con-tact"-that sticky paper that looks like walnut, marble, pink hearts, or any one of two hundred different designs. You can match it to your den, wallpaper, end table, or if you happen to like gold fleur-de-lis on a silver tackground, the choice is yours.

Assembly. OK-let's get to work. The parts list and schematic diagram tell you what is needed to put the Stereo Compact together. The record changer came from Olson Radio in Chicago, as did the amplifiers and speakers. The grill cloth for the speakers came from a remnant shop in Oak Park, Illinois. The nuts, bolts and screws from my junk box, and the appreciation from my girl friend, her girl friends, and several male types who have frugged and hullygullied to the Compact's output beat. When I bought the amplifiers a schematic diagram came with each one of them. The schematic diagram said I could do several things with these amplifiers. The two volume controls are what they said they should be (100 K

STEREO COMPRAT

each) and they work like a charm. All you have to do to get that nice bass sound is put a .03 condenser across each pot like the diagram says. There is no magic about mounting the parts. The amplifiers are glued to the cabinet with Elmer's Glue. The power transformer is screwed to a $1^{\prime \prime} \times 4^{\prime \prime}$ wooden block, as is the terminal strip on which I mounted the four rectifiers to make the bridge power assembly. At $\$.99$ for four of these units, you can't go very far wrong. The capacitors are out of a Lafayette's catalog, as are the two resistors that stabilize this power supply. Sure . . I thought of zener diodes for voltage regulation and all that jazz, but who needs it? Three 500 mfd . condensers glue down the regulation like it was going out of style. Zeners at $\$ 4.95$ we don't need.

A few points to observe, make sure you tie the ground end of the pots (R1 and R2) used as volume controls to their own cases. It keeps hum out of the system. And I didn't tell you-this system is all solid state, so no

Schematic diagram for the Stereo Compact
does not show amplifier details because
these circuit sections are purchased modules.
Note use of shielded cables on input cir-
cuits-dress these leads away from AC.
worry about heat One other point-keep those audio leads from the cartridge out in the middle of the cabinet-low level audio just do not mix. Don't argue-just believe me. No fuse was inserted in the primary leads of the transformer on the power supply. The schematic says you can use one if you want, but you just add $\$.65$ to the system, and that buys a pretty good Martini where I come from.

The record changer comes with a template that tells you how to cut out the mounting board. I recognize that $\$ 12.95$ is pretty cheap for a record changer, but that's what it costs. It has four speeds and an "On and Off" switch as an integral part of the unit. Oh! You want to use a Garrard. OK, but remember, the audio amp modules are not designed for that Pickering or Shure cartridge, and besides the Ronette cartridge that comes with this outfit has enough oomph to drive the amplifiers to drink.

Use a couple of insulated stapes to hold the wires in place. The resistors in the power supply came with mounting hardware attached. You also need a roll of vinyl tape to insulate the leads that come out of the

PARTS LIST

A1, A2-Audio amplifier module (Saxon Mity module, Olson AM-218, Lafayette 19G4401, or equiv.)
C1, C2 - 3-mf., 100 -voli papre capacitor
C3, C4, C5—500-mf., 25 vdc electrolytic capacitor
D1, D2, D3, D4-500-ma., 100 -piv diode rectiffer (GE IN91, Olson kit of 4 \#RE-70, or equiv.)
11 -Neon indicator kit (Olsen KB-1 64 or equiv.)
J-3-circuit headphone-type jack (Switchcraft Litfle-Jax or equiv.)
J2, J3-Double phone jack (H. H. Smith 1214 or equiv.)
P1, P2, P3, P4—Plug, phono (Switcheraft 3501-M or equiv.)
R1, R2- 100,000 -ohm, audio taper potentiometer (IRC Q13-128 or equiv.)
R3, R4-20-ohm, 8-watt resistor (Sprague "Brown Devil" or equiv.l
R5-1 50,000-ohm, $1 / 2$-watt resistor
SPKR.-6" $6^{\prime \prime} 9^{\prime \prime}$ speaker, $3.2-4$-ohms $(2$ required) (Olson $\mathrm{S}-278$ or equiv.)
T1-Power transformer, 117-v. primary, 25-v. secondary IOlson T-290, Knight 61G421, Stancor P-6469, or equiv.l
1-Record changer with Ronette cartridge (Olson RP-222 or equiv.)
Misc.-Wood (see text), shielded wire, hookup wire, nuts, bolts, screws, knobs, ferminal strips, rubber feet, insulated staples, etc.
Estimated cost: $\$ 50.00$ or less depending on woad costs and available spare parts.
Estimated construction time: one weekend

Cabinet Detail Drawing \#1-Cover for unit is glued-brads hold pieces while glue sets.
amplifiers. Solder those leads together. They carry as much as 700 mills when you get those real bass notes. I have shown the leads from the Mity Modules like I bought them. If you get yours from Lafayette, or Radio Ham Shack, or Courtland Street, then observe the identification as shown on the schematic diagram instead of the colors on those leads. The manufacturer gives both right on the amplifier.

Working With Wood and What Not. The grill cloths are fastened to the speakers as shown. Cut a piece of cardboard as shown in Speaker Grill Detail Drawing, and then use old tire cement, rubber cement, airplane glue, or just plain glue, to fasten down the cloth. Cut the cloth about one-half inch bigger than the cardboard mounting and fold it over the edges of the cardboard. If you use rubber cement, place a thin layer on the cardboard first and then a thin layer on the cloth. After they are dry, they stick together like a pair of magnetic kissing dolls. Do you want to know why I made the speaker cabinets $81 / 2 \times 11$? I just happened to have two pieces of bond typing paper

Speaker Grille Detail Drawing-Using materials found at home can reduce cost to zero.

Cabinet Detail Drawing \#2—Follow drawing and text instructions to avoid troubles.
to make templates for the speakers. How was it done? Simple-I put a cloth towel on a table and laid a piece of bond paper on a towel. I centered the speaker on the paper and pressed a little hard on the back of the speaker frame. Voila! When I picked up the speaker there was the outline of the speaker gasket-nice and plain. I took a pencil and outlined the inner edge of the gasket outline which gave me the template for my 6×9 speaker opening in the speaker cabinet.

How did 1 fasten the speaker frame to the cabinet? I glued it. Try epoxy. Then you don't have to worry about screws sticking through your grill-cloth when you place it on the speaker cabinets.

Oh yes, that piece of $6^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime}$ wooden block you used to mount the power transformer, the terminal strip and the rectifiers -it will also hold the filter condensers (C3, C4 and (5) and the filter resistors (R3 and R4). The block is glued in place after it is completed. Elmer's glue or epoxy will do. One more thing . . . the record changer has a ground lead. Tie that ground lead to the

Speaker Cabinet Detail Drawing-Not shown is rear panel, same dimensions as front.

positive terminal of your power supply. It gets rid of objectionable hum.

You will notice that there is a jack included in the system for a pair of stereo headphones. You might like to listen all by yourself, and the neighbors don't like your two watts at such high volume.

The Cabinet. The assembly of the cabinet is very simple. All of the panels that comprise the cabinet are of $1 / 4^{\prime \prime}$ plywood. You need the following pieces to assemble the woodwork:

2 pcs-14" $\times 1-1 / 2^{\prime \prime}$ (front and rear panels)
2 pcs-13-1/2" $\times 1-1 / 2^{\prime \prime}$ (side panels)
$1 \mathrm{pe}-14.1 / 2^{\prime \prime} \times 13-1 / 2^{\prime \prime}$ (top cover panel)
The five pieces described above comprise the cover and are assembled as shown in Cabinet Detail Drawing \#1. Use glue on the edges and $1 / 2^{\prime \prime}$ wire brads in your assembly process. Wipe off the excess glue after the parts are nailed together. Be very sure that the small panels that are the sides of the cover are held square as the glue sets and the top cover panel is nailed on.

2 pas-14" $\times 8-1 / 2^{\prime \prime}$ (front and rear panels)
2 pcs-13-1/2" $\times 8-1 / 2^{\prime \prime}$ (side panels)
4 pes-11" $\times 1 / 2^{\prime \prime}$ (supports)
$1 \mathrm{pc}-14^{\prime \prime} \times 13^{\prime \prime}$ (record changer board)

POWER SUPPLY WOOD BLOCK

Upside down view of the Stereo Compact pointing out location of major assemblies.

The only major electronic assembly put. together by the author was the solid-state bridge-type power supply. Transformer, diodes, two resistors, and filter capacitors are mounted on a $6^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime}$ wood block and installed on the cabinet's rear side.

The nine pieces described above comprise the main cabinet and are assembled as shown in Cabinet Detail Drawing \# 2. When its dimensions are laid out prior to cutting it to the proper size, it is suggested that the pencil lines be actually cut out to allow the motor board to be placed within the cabinet after having been covered with "Con-tact" without binding on the sides of the cabinet.

Determine what edges are to be the top edges of the first four pieces cut in this section. Identify them and mark a line on each $41 / 2^{\prime \prime}$ from each top edge and parallel to this top edge. Glue one of the $11^{\prime \prime} x^{1 / 2} 2^{\prime \prime}$ pieces on each of the four side panels in conjunction with the line previously drawn and at the $41 / 2^{\prime \prime}$ distance from the four top edges. These pieces should be placed on the side panels equidistant from each edge. These pieces are the supports for the board that holds the record player.

Assemble the four side panels in the same fashion that the side pieces for the cover were assembled, observing that the two side panels overlap the front and back panels to create a cabinet whose interior dimensions are $14^{\prime \prime} \times 13^{\prime \prime}$. Use glue and wire brads to assemble these side panels and observe that the cabinet must be maintained in its square configuration.

Speaker Cabinets. Having now assembled the cabinet for the record player and amplifiers and associated controls, we can turn our attention to the two speaker cabinets. Refer to Speaker Cabinet Detail Drawing. You need the following pieces to make the two speaker cabinets:

Here is the completed Stereo Compact with the rear panels left off the speaker cabinets and the phono cabinet resting on its side to show all the electronics. Notice how neat the wires and cables are routed to modules.

2 pcs-11" $\times 8-1 / 2^{\prime \prime}$ (front and rear panel)
4 pcs $8-1 / 2^{\prime \prime} \times 4^{\prime \prime}$ (side panels)
4 pcs-11-1/2" $\times 4^{\prime \prime}$ (top and bottom panels)
These pieces are all fashioned from $1 / 4$ " plywood. The side pieces are assembled over the part that creates the mounting board for the speaker. After the $11^{\prime \prime} \times 81 / 2^{\prime \prime}$ pieces have been cut, the template that was created before to show the outline of the $6^{\prime \prime} \times 9^{\prime \prime}$ speaker is placed on top of these pieces and the outline of the speaker gasket is transcribed to the wooden pieces. The speaker opening is cut from these pieces prior to assembly by the use of a coping saw or sabresaw if you happen to have one. The pieces are assembled to make a cabinet that is $111 / 2^{\prime \prime} \times 9^{\prime \prime} \times 4^{\prime \prime}$. As before, the sides and top are assembled with glue and wire brads with an eye to their being essentially square. The side panels are overlapped on the speaker mounting panel to complete the speaker cabinets.

Finishing Up. It is essential that the assembled cabinets, speaker and changer hoard be prepared to accept the Con-tact covering. All wooden parts should he coated with white shellac or lacquer after sanding to insure a good level of adherence between wooden surface and the Con-tact covering that you use. One piece of advice . . y you can always paint the cabinets from that spare paint that you have stored away if it matches the decor of what you have in mind as a permanent resting place for the system. Having covered the parts with Con-tact or painted the surfaces, assemble the top to the bottom with $1^{\prime \prime} x I^{\prime \prime}$ butt hinges and acquire a side lid support that will allow you to change records with no effort when the cabinet lid is in the open position. Having now assembled all of the cabinetry, from a piece of wood $3 / 4^{\prime \prime}$ syuare and about one foot long. cut into four equal pieces about $3^{\prime \prime}$ long. Place glue on two

Once completed and finished with care and pride, Stereo Compact will be a handsome, as well as useful, medium-fi phono-amp.
sides of these pieces and place them in the four corners of the record cabinet below the surface of the mounting board with the bottom ends of the pieces at the exact bottom end of the cabinet proper. These will later accommodate the four rubber feet that will support the entire cabinet assembly $1 / 2$ " above the surface on which it will rest. and allow a convection type ventilation for the power transformer which may trend to warm up a bit.

Determine which face of the larger cabinet you intend to make the front face of the unit, and drill four $3 / 8^{\prime \prime}$ holes in the face as shown on Cabinet Detail Drawing \#2. These holes will accommodate the two volume controls for the Left and Right channel, the On-Off indicator and the headphone jack.

In evaluating this unit against many others which are a great deal more expensive, it is only fair to say that 2 watts of audio cannot compete with the 70 or 80 watt monsters that can drive $15^{\prime \prime}$ speakers to sound like the Staten Island Ferry in a fog bank. One thing I am sure you will say is that the lovely quiet sound when you need it is about equal to any other unit at the same volume level that this unit will give you. Anyway, you spend less than $\$ 50.00$ to make the Stereo Compact and I would like some commentary on the reception you get from your friends who are romantically inclined.

Power Transistor Tester

By James A. Fred

Transistors are like vacuum tubes-they can become leaky or go bad.

There are many transistor testers available for low power or small signal transistors but very few, if any, reasonably priced power transistor testers are available.

Those of you who service modern transistor auto radios have had many opportunities to check leakage and gain of power output transistors if only a power transistor tester were on the workbench. The transistor manufacturers people would like to have us believe that transistors have indefinite life, and never need to be replaced. But those of you at the repair benches and home workshops know better, and it was with this thought in mind that we designed the tester described in this article.

Design Features. The most important section of the power transistor tester is its constant voltage power supply. A conventional full-wave bridge rectifier is used to provide about 18 volts of DC which is then regulated to 12 volts by a Zener diode.

The transistor leakage is indicated on a $0-100 \mathrm{ma}$. DC meter. One of the important characteristics of a power transistor is the leakage between the emitter and collector with the base floating. This tester applies a maximum of 12 -volts $D C$ to these elements and leakage should not exceed 50 ma . A variable resistor provides a voltage that can be adjusted between 0 and 12 volts so that you can detect 50 ma . leakage without burning out the meter. The other important thing to measure is gain by applying a small bias
voltage to the base. If the transistor has gain it will show up as an increase in current on the meter. The increase in current will vary depending on several factors. but should be at least two to four times.

This tester was styled to match the author's Lafayette Transistor Analyzer Kit, model 223. However, a standard aluminum chassis box can be used to replace the plastic cabinet. Slide switches were used although toggle switches would have done as well. Any meter of the proper range can be used as long as it will physically fit the space allowed.

The front panel was made from . 050 -inchthick aluminum that was etched in strong lye water to give it a satin finish. When etching aluminum in this way do it either out of doors or in a well ventilated room. Do not make the lye water too strong or it will turn the panel black. Mix common household lye in hot water in an enameled pan or stoneware crock. Do not mix in an iron or aluminum container. After etching rinse carefully in cold water and dry with a soft cloth without touching the front of the panel. Apply black decals or any other type of lettering and spray with a protective coating.

The bridge rectifier can be built up with four separate rectifiers or one of the new potted types may be used. The filter capacitors are necessary to make as pure a DC voltage as possible so that no ripple will be introduced into the transistor under test which would upset the gain measurement. The

Don't guess and replace power transistors blindly-test them first.

transformer used in our tester was salvaged from a piece of Minneapolis-Honeywell equipment although any transformer with a secondary of 18 to 24 volts, rated for a current of at least 200 ma . can be used. In order to determine the resistance of $R 2$, the Zener current limiting resistor, for a different secondary voltage use the following equation.

$$
R 2=\frac{V s-V o}{1.1 \times I \max }
$$

$V s$ is the supply voltage at the output of the bridge rectifier, $V o$ is the input voltage to wirewound control R3, or in this case 12 volts, I max is the load current maximum or in our case 100 ma. As an example let us say that our bridge rectifier is putting out 24 volts DC. Subtract 12 volts from 24 volts leaving 12 volts. 1.1 times 100 ma ., which is our maximum load current, gives .110 amperes. Dividing gives a value for R2 of 109 ohms. A standard value 100 ohm resistor at 2 watts

Power Transistor

Although parts location is not critical for proper operation of the unit, builders will find it difficult to squeeze parts into the plastic case if they ignore author's layout.
would be satisfactory. The wattage rating of Zener diode Z1 can be arrived at by multiplying the voltage rating of the Zener, which is 12 , by the maximum current through it, or 1.32 watts. Our tester uses a 1 watt Zener, but we have secured it tightly against the front panel with a cable clamp and it runs cool. The front panel thus serves as a large heat sink. Unless you want to do the same you had better use the 10 -watt unit specified in the parts list. Construction is straight forward with only one safety tip, and that is, "Don't over heat the silicon rectifiers or Zener diode. Use a heat sink when soldering them."

Just in case you are wondering why there is no npn-pnp reversing switch, forget it. Power transistors used in auto radios are $p n p$ units almost without exception. Just in case you run up against an odd-ball, you can juryrig a test setup using the testers power supply. Just do things upside down, that is reverse the power supply leads coming from the zener diode to the testing circuit. Watch M1's polarity.

Using the Tester. After assembly, wiring and testing the instrument is ready for use. Place Gain-Leakage switch S2 on Leakage, rotate the voltage control to the counterclockwise end of rotation, attach the pnp power transistor (out of its circuit) to the test leads, and turn on the power. Advance the voltage control and observe the meter.

```
PARTS LIST
    C1, C2—1000-mf, 25-vde electrolytic capacitor
D1, D2, D3, D4-1N91 (four required) or 1
        bridge rectifier module (Mallory FW50 or
        equiv.)
M1- 0 -100-ma. DC meter (EMICO Model RF-
        \(21 / 4 \mathrm{C}\) or equiv.)
NE1-Neon lamp NE-51H or Tineon Indicator
        36N2311-6 complete with jewel and internal
        resistor, or equiv.
    R1-56,000-ohm, \(1 / 2\)-watt resistor (not required
        if NE1 is a Tineon Indicator)
    R2-See text
    R3-800 to 1,000 -ohm, 4 -watt wirewound po-
        tentiometer
    R4-56,000-ohm, 1-watt resistor
R5-33-ohm, 2-watt resistor
S1, S2—S.p.s.t. slide or toggle switch
II-Transformer; 115-volt pri.; 18-25-volt sec.
        at 200 ma .
Z1-IN2976 zener diode (Mallory ZAl2 or
    equiv.) (see text)
\(1-6-13 / 16^{\prime \prime} \times 5-9 / 32^{\prime \prime} \times 2-5 / 16^{\prime \prime}\) plastic case
        (Allied Radio 87P886 or equiv.)
3-Alligator clips with 3 different colored in-
        sulators
1-Dial plate (Mallory \#389 or \#390, or
        equiv.)
\(1^{-7 \prime} \times 5^{\prime \prime}\) aluminum sheet for front panel (see
        text)
Misc.-Line cord, knob, terminal strips, wire,
        solder, hardware, decals, lye, etc.
    Estimated cost: \$22.00
    Estimated construction time: \(\mathbf{4}\) hours
```

If the meter reads 50 ma . STOP! If not rotate the control to its full clockwise position. If the meter reading hasn't exceeded 50 ma., it has passed the leakage test and may be tested for Gain. Set the voltage control back to seven on its dial. Push the switch to Gain and the current reading should increase. On transistors with appreciable leakage the increase in current will only be from two to four times. On units with very little leakage the current increase may be as much as twenty-five times. Power transistors with high leakage and low gain can be used, but will not perform nearly as well as low leakage high gain units. As you gain experience in using the tester and the tested transistors in actual sets you will learn to appreciate the difference in power transistors. Keep a record of leakage and gain and actual circuit operation of each power transistor you test and you will soon be able to interpret your readings like an expert. There aren't any real tight specifications on power transistors that the average serviceman can use.

Experience is still the best teacher when it comes to testing and using power transistors.

THE STATIC CAPER

When DX is beneath you, then it may be Tefnut of the Dark Satellite

Let's face it, yours truly has been around. If someone hung a sign on my back, This Engineer for Hire, he'd be close to right. SWL'ing wasn't enough, I had to travel. So when I got my degree as an electronics engineer, I took a job in Bhutan, setting up a British owned commercial SWBC station atop the Himalayas. Then it was Colombia for a couple years where I put together a BCB network. Which brings me to this job for the bearded one-Ammer Ded-second-in-charge of his secret relay station in Southern Adindan near the Egypt-Sudan border. As you can see, I'm pretty neutral. I'll work for anybody. You might also call me a DX fanatic. Before I started on these travels, I would dream about DX and DX places, complete with nightmare static. I had to travel.

In charge of the Adindan operation was one Professor Von Kirk. After a couple weeks on the job, I decided he was crazy. Not so far gone he couldn't function, but still crazy. I had gone looking for him with paper work, official reports to be signed. His office was empty.

So I went down to the professor's quarters.

Knocked. Silence. But the door was unlocked and I went on in. In the center of the room Von Kirk's large desk. To the right and left of me were banks of computer racks. The set-up looked like something from the late, late horror show.
"Professor." Nothing, so I shouted louder, "Professor."

More silence.
An open book was on his desk. I moved in closer to get a look at it. Curiosity killed the cat but then cats have nine lives.

The Light of the Near East, Volume I by Thomas H. Burgoyne. It was opened at Section III, Chapter III, "The Dark Satellite."

I just skipped over the words quickly. Some jazz about this satellite populated by evil beings, supernatural races or something like that. And about their agents on the earth, the Inversive Brethren.

Von Kirk came in then. Followed by two of our local Arab workers, unskilled but with plenty of muscle. They carried in a crate. He motioned and they put it down behind his desk. Then he saw me. "What do you want? These are my private quarters!"

I showed him the reports. Von Kirk took them, pointed for the Arabs to go. I started to move out behind them-
"Wait!" He crossed the room, shut and locked the door.

Like locked in the tiger's cage. Beside that weird book and way out electronics gear, there was the professor himself. If ever there were doubles on Earth, Von Kirk and Boris Karloff qualified.
"I am in complete charge of this base. You understand that. My word is law."

I nodded.
"What you see here is my own personal project financed with my own resources. It has nothing to do with the Adindan government." He fiddled with The Light of the Near East on his desk.

I nodded again.
He considered me a moment. "I need a qualified assistant." Hesitated. "I am willing to pay you an amount in addition to your regular salary."
"How much?" Play it safe, play along.
"If this does not interest you, then apply to Cairo for a transfer." Von Kirk circled me a couple times.
"How much?"
"\$50 a week, U. S. money."

I spread my hands. "Good enough." Why not! All I had to do was humor this crazy old man and pile up the extra moola.

Von Kirk shut his book with a bang. "Then it is settled." He sat down. "Unpack that crate while I explain to you what is involved here."

It was quite the bit. Von Kirk had found that dark satellite. It revolves inside the earth which is hollow. The inhabitants of this satellite use static, that's right, atmospheric noise to communicate with their agents on the earth, those Inversive Brethren. Because this dark satellite is nearer the surface in the tropics, their messages were considerably louder, other scientific the-
ories to the contrary. By the use of computers, Von Kirk hoped to break their code.

I got the crate open. Inside-a TV set!
"The messages may take either aural or visual form."

So every day and part of the night, too, we kept at it. I didn't mind working during the hours of darkness, but days-that heat from the desert sun made his lab almost unbearable. But Von Kirk wouldn't wilt or rest.
"When I began my work in Baden many years ago, time was expendable. Now there is not much left." Von Kirk made the station a real funland.

His approach was simple enough. With a broadband receiver (one he invented himself) he would pick up all the frequencies below 3 mc . feed them into a speaker and TV picture tube - but the signals were first rearranged in sequence and comparative volume via those banks of computers. I took the left bank, him the right.

We did get voices of course, however, these were usually traceable to one of the high powered BCB stations in the Near East, like Cairo itself on 773 kc . and Omdurman down in the Sudan on 572. But then a voice did come through we couldn't identify. At 2.00 AM, female, soft and deep. She said quite clearly "prepare to relay intelligence to the South African resistance command," then slipped off into the noise.

Von Kirk circled the room swiftly noting computer settings. "That was Tefnut, daughter of the primeval being, princess of the Dark Satellite."

I concluded TefNUT summed up his whole project pretty well.

When he finished, Boris, I mean Von Kirk, stopped dead and just stared at me. "You found her voice attractive?"

I laughed and nodded.
"You must be careful. She will try to tempt you and recruit you into the Inversive Brethren." Von Kirk considered the danger briefly. "We will have to risk it. Tomorrow night at the same time!"

After which I went to bed, exhausted from the heat, and dreamed about DX again for the first time in a couple months. Only now the station I wanted was Tefnut. Static, oceans of static, with her voice audible on occasions. Then on came Radio Berlin International and blocked out the frequency.

I woke up in a cold sweat.
After being stuck in Adindan for three
(Continued on page 94)

If your TV set can receive any of the 70 UHF-TV channels then it's time for some top-level thinking on your roof

TThe FCC requirement that, as of March, 1964, all TV receivers intended for interstate shipment must be capable of receiving UHF channels, coupled with the cropping up of many new UHF stations in all areas of the country, indicate that UHF TV is finally here to stay. This boils down to the fact that in all probability UHF either has, or is about to be coming to your town. The question is . . . are you able, or will you be able to receive it? Even though you may have purchased a new TV receiver capable of receiving all 82 channels, or added a UHF converter to your present set, there is much more to receiving a good UHF signal than hanging a wire out the window
or simply tying on to your present V'HF' antenna. UHF signals are a bit trickier to handle than the old familiar VHF. Let's take a look at why UHF is around in the first place, as well as at the UHF signal itself and how we may best capture it for feeding to the receiver.

Why UHF? Originally, when the 13 VHF TV channels were created, it was felt that they would provide adequate capacity for the TV market. It was subsequently found, that additional channels would be required to handle the desires of many areas for additional outlets. Another reason for UHF is that it permits two channels of the same frequency to operate relatively close together
. . . say in adjacent cities. This has been a problem with VHF; the advent of more powerful transmitters and more sensitive receivers has resulted in interference between like channels in relatively widely separated areas. Thus, in a nutshell, UHF permits: 1. a larger number of available channels, and 2. these channels may be spaced more closely together than in the case of VHF channels.

Now that we've seen why we have UHF, let's take a look at the basic UHF signal in order to get a better idea of how to handle it. The first and most obvious difference between the VHF and UHF signals is their frequency. Both VHF and UHF signals are high enough in frequency so as to travel in a straight line (like a searchlight beam) rather than following the curvature of the earth as do lower frequency signals. However, lower band VHF TV signals are susceptible to a phenomenon known as "skip" as shown by the sketch, Fig. I. This "skip" occurs when the transmitted signals bounce off the ionosphere (a layer of charged particles encircling the earth) and return to a receiving point many miles from their point of origin. This "skip" explains some of those amazing TV-DX accounts we hear about.

This "skip" effect is non-existent at the UHF TV channels thus eliminating the chance of interference between widely sepa-

Fig. 1. VHF signals skip to distant receiv-ers-UHF signals pass through ionosphere.

Fig. 2. A log periodic UHF antenna with 21 cells-good for working stations 80 miles.
rated channels. The UHF TV signals are more readily blocked by relatively small objects such as buildings, etc. due to the much shorter wavelengths involved. The cumulative effect of this again cuts down the range of UHF signals. Also. the radiated signal strength of UHF signals is generally lower than in the case of VHF signals . . . another factor is their reduced coverage when compared to VHF.

UHF signals are also more directional than lower frequency VHF signals, and as a result, ghosting due to multi-path signal reception is more of a problem with VHF signals.

Capturing the UHF Signal. The most logical starting place is at the antenna. UHF antennas pretty much follow the same basic types as found in VHF-the dipole, folded

Fig. 3. Four individual bays are stacked one on top of the other for greater gain.

Fig. 4. UHF antenna using a parabolic reflector to gather in signal for high gain.
dipole, conical, yagi, etc. However, the physical construction of UHF antennas differ considerably from corresponding VHF types. For one thing, all UHF antennas are considerably smaller than their VHF counterparts. The reason for this, of course, is the shorted wavelengths up in the UHF spectrum. Remember, the element length(s) of any antenna, dipole, yagi, or what have you, is a direct function of the wavelength being received.

The smaller physical dimensions of the UHF antenna make possible many arrays not practical with the larger, more bulky, lower frequency VHF antennas. For example, look at the log-periodic UHF antenna pictured in Fig. 2. The design of this type of antenna for VHF frequencies would be very difficult due to the considerably longer element lengths required as well as the greater spacing between elements. Maintaining structural strength would be extremely difficult, and the increased weight would also be a problem.

Fig. 3 is another example of the physical advantage gained with UHF antennas. A large number of individual bays are easily stacked for increased gain without taking up an unreasonable amount of space or becoming unwieldly or overly heavy.

The smaller dimensions of UHF antennas offer still another advantage . . . much better performance. As just mentioned, a fairly large number of arrays may be stacked by increased gain. It is also feasible to employ the parabolic antenna design (similar to those

Fig. 5. 90-degree corner reflector bounces UHF signal back to dipole receiving element.
microwave dish antennas). This design, somewhat similar to using a reflector behind a searchlight to increase intensity . . . only in reverse, results in greatly increased antenna gain (sensitivity). Fig. 4 pictures an antenna using this approach. Note the curved reflector which resembles a section of a parabolic reflector. It's pretty obvious that this type of construction would be just about mechanically impossible with a VHF antenna.

Fig. 5 shows another type of UHF antenna construction. Actually, a dipole with reflector, this unit differs from the VHF dipole and reflector in that a number of

tRANS.
Fig. 6. Multi-array UHF antennas can eliminate ghosts caused by multi-reflections.

1
1
ANTENNA
INSTALLATION
individual reflectors are used in place of a simple tubular rod reflector element. This screen improves antenna gain and sharpens its selectivity.

Besides providing increased gain, the "fancier" arrays possible with the smaller UHF antennas offer sharper pickup patterns. Just what this means is shown in Fig. 6. As we mentioned earlier, UHF signals are particularly prone to ghosting as a result of multiple path reflections. Notice that the sharp reception pattern of the multibay UHF antennas effectively reduced the pickup of multiple path reflections as well as signal pickup from its rear.

In areas where a strong UHF signal is present, "bowtie" UHF dipole antennas such as pictured in Fig. 7 will be satisfactory. Fig. 8 shows an indoor antenna of unusual shape, a UHF log periodic trapezoid.

The Antenna to Receiver Path. Although the installation of a UHF antenna is essentially the same as for a VHF, you still have to lug it up to the roof or up to the attic. There are also a number of differences that you should note:

For one thing, signal losses are much greater at UHF frequencies, as we men-

Fig. 7. TV top UHF antenna resembles its outdoor brother-works well in urban areas.

Fig. 8. JFD's new UHF VUVista indoor antenna pulls

tioned before. This means that care must be taken to reduce or eliminate all sources of possible signal loss between the antenna and receiver, or converter, input terminals.

Beginning at the antenna itself, make sure that lead-in cable connections to the antenna terminals are tight and that the antenna terminals themselves are free from all corrosion. While in this area, don't overlook the antenna terminal block and antenna insulators. Avoid getting any oil or grease on these parts. as these substances make excellent signal-killing dirt catchers.

The type and care of the lead-in wire or cable is especially important at UHF frequencies. A source of signal loss at VHF

insulated conductor spacers
Fig. 9. Open-wire type TV lead-in is best when losses must be minimized. Spacers between conductors are made of porcelain glass.
frequency, signal loss in the lead-in, is a considerably larger problem at UHF frequencies. The least "lossy" type of lead-in is the "open-wire" type such as shown in Fig. 9. As you can see, it consists of two parallel wires, separated at regular intervals by lowloss spacers. Due to air being the only dielectric between the wires, except for the widely spaced insulators, this lead-in has extremely low loss at UHF frequencies. The
one disadvantage of this type of lead-in, however, is that it is more difficult to handle than the other types of lead-in.

The next least lossy type of lead-in is the tubular type. The advantage of the tubular lead-in as compared to the flat type is that, being circular, it provides a longer leakage path between conductors. One point though . . . be sure to seal the ends of tubular lead-in with either a match flame or hot soldering iron after it has been installed to prevent any water from getting into it.

In areas where interference, such as automobile ignition noise, is a problem, shielded coaxial cable is your best bet. Since this cable is usually 75 ohms unbalanced line, a matching transformer will probably be needed at the antenna as most antennas have a nominal impedance of around 300 ohms. Similarly, a second transformer will be required if the converter or TV's input is rated at 300 ohms.

When installing the lead-in, it's of course important to keep it well away from other objects, especially metallic ones. Aslo, the length of lead-in from antenna to set should be kept as short as possible to minimize signal loss.

While still on the subject of signal loss, it's important to keep in mind that some types of lightning arrestors can cause severe signal loss at UHF frequencies. If, after completing your UHF installation, you find that you are losing signal, check the lightning

Fig. 10. Typical UHF converter made by Jerold selects UHF channel and provides boost.
arrestor. If the signal improves without it, replace with a higher quality unit.

Orienting the antenna for best picture is a bit trickier at UHF frequencies. Since the UHF signal bounces around more than VHF, careful orientation can be a bit touchy . . . only a change of a few degrees can make the difference between no picture and

Fig. 11. Wide-band UHF signal boosters are mounted on antenna masts just under the UHF antenna. Tele-Amp unit is shown above and Jerold unit below. Power to units is supplied through TV lead-in wire from indoor supply.

a good quality picture. Likewise, raising or lowering the antenna just a foot or so can make all the difference in the world. In some instances, it's possible to get a stronger signal from a reflected signal rather than the direct signal from the transmitter.

UHF Converters and Boosters. If your TV set is not equipped to receive UHF, then obviously you must obtain a UHF converter in order to be able to receive any UHF stations. One exception to this is if your receiver's tuner is of the type which will receive UHF strips. In this case, you simply obtain the strip for the desired UHF channel.

UHF converters come in all sizes, shapes, and forms nowadays . . a typical unit being shown in Fig. 10. Some manufacturers offer transistorized converters which offer the advantages of low power consumption and cool operation. Converters are available which may be placed on top of, or near, the receiver. Others may be placed unobtrusively behind the set.

There are a few precautions to watch when installing a UHF converter. To prevent converter oscillation (indicated by either interference bars or excessive "snow"
in the picture), keep the converters input and output leads well separated. Also, keep the leads from the converter's output to receiver antenna terminals as short as possible.

Heat is an enemy of UHF converters . . . especially transistorized ones! To minimize converter drift due to excessive temperatures, keep the converter well isolated from such relatively high temperature spots as the rear of a TV that is placed smack against a wall.

UHF boosters are now available. Similar in results to VHF units, they give the UHF signal extra "oomph" before it reaches the converter or receiver. Fig. 11 shows two types of antenna mounted UHF boosters which amplify the signal before it is sent down the lead-in. This is an advantage as the stronger signal tends to override the noise and interference picked up by the antenna lead-in.

UHF "two-set" couplers are also available

Fig. 12. Since anyone can splice wire, far too often two set couplers are eliminated in installations causing loss of signal, ghosts.
. . . a typical unit being pictured in Fig. 12. These couplers are designed for minimum signal loss at UHF frequencies and provide better performance than a conventional VHF coupler.

Equipped now with the scoop on UHF and a clear picture of the reception process. you're ready to start pulling in those ultrahigh frequency broadcasts.

Workbench Tips

A frequent cause of hum (and sometimes even whistles from radios) is an improperly grounded can-type filter capacitor. Most can installations rely on their twist lock for connection to ground. In time an oxide formsa high resistance circuit occurs. To prevent trouble, always solder at least one lug to ground in kits and when replacing.

Ordinary paper clips (thousands are discarded hourly) make handy, quick detachable, connectors for electrical wire ends with only slight alteration. Simply straighten out one end of the clip and attach the wire. The wire end may be spot soldered or inserted in a loop, then the loop is squeezed together in a vise or with pliers. The remaining portion of the paper clip may be used as a washer with the tab end under a terminal nut or as a simple hookup as shown in photo at right.

If your SW ear phones weigh heavy on your head, take a tip from the makers of hi-fi headsets and pad them with foam rubber. Foam rubber powder puffs are ideal for the purpose and are available at most cosmetic counters. To install, simply cut a $3 / 4^{\prime \prime}$ hole in the puff's center, and cement in place as shown in photo at left. Install puffs wherever headband meets top of your head.

If you're looking for a useful construction project, which can help you test salvaged parts or \log rarer $D X$, the Winky-Dink isn't for you. But if, like most of us, you enjoy a strictly fun gadget from time to time, then Winky-Dink is what you have been looking for.

Winky-Dink is a one-hour project leaving the remainder of the evening free to experiment with different blink rates. Only eight components are employed, and total cost should be under $\$ 3.00$ (less if you're lucky and have some of the parts in your junkbox).

The completed Winky-Dink does nothing more than sit on the table and wink its two light-bulb eyes back and forth continually, but it's a conversation-stopper to non-electronic-minded visitors. In a home lab crammed with exotic (and expensive) equipment, Winky-Dink easily steals the show when anyone drops in.

If you must be practical, it makes a fine toy for a young child. To use it for this, perform simple surgery on a stuffed animal. Remove the sewn-on eyes and replace them with Winky-Dink's bulbs; then provide a zippered compartment for batteries and pack the tiny circuit board into the animal's interior.

Construction. Arrange the two transistors, the capacitors, and the resistors on the circuit board and solder the leads to a home-made printed circuit board. See Detail Drawing. Use a small, hot iron and work rapidly; the transistors are rated to withstand solderingiron heat for no more than 15 seconds at a distance of $1 / 16$-inch from the case.

Rather than using the etched board, you may prefer to lay out the components in similar arrangement on perforated hard-
board. Stiff cardboard is also an excellent "chassis" material; necessary holes can be punched with the point of a drawing compass or with an ice-pick.

Leads to the bulbs can be connected either by soldering them directly to the bulb bases, or by using sockets. Since either \#48 or \#49

Detailed diagram of underside of printed circuit board-be sure to copy to scale.
pilot lamps can be used (electrically they are identical), you can use either screw or bayonet-type lamp sockets-whichever ycu have in the junk box.

Battery connections are best made by using a battery holder, although with care you can solder directly to the two cells. The holder is recommended as Winky-Dink draws approximately 60 milliamperes from a fresh pair of D cells, which will require battery replacement from time to time. If the large ignition-type cells are used for power, they should last their shelf life.

Thumbnail Theory. Winky-Dink is an astable collector-coupled multivibrator, sim-

Winky-Dink circuit board all wired and ready for Iamp and battery connections. Be careful not to overheat transistor leads.
plified to the most extreme degree possible. The transistors function as switches to turn the bulbs on and off, and the capacitors make one transistor stay "off" whenever the other is "on."

For instance, if transistor Q1 happens to be "on," its collector voltage will be nearly zero. This places the positive end of C2 at ground level. However, if Q2 is "off" at the same time, its collector voltage will be the same as that of the battery- 3 volts. Thus C 1 is charged to 3 volts, through bulb 12.

While Cl is charging, the current flowing to charge it passes through the base-emitter junction of Q1, keeping Q1 "turned on." When C1 reaches full charge, however, this current flow ceases, and Q1 tends to "turn off."

This raises the collector voltage of Q1 positive to ground, then the change in Q1's collector voltage is transferred through C2 to the base of Q2, tending to turn Q2 "on."

This action, in turn, causes the collector voltage of Q2 to drop. The change in collec-

[^7]tor voltage of Q 2 is transmitted through C 1 back to the base of Q1, further tending to turn Q1 "off." In addition, the 3-volt charge on Cl adds to the change, so that the base voltage of Q1 is 3 volts more negative than the collector voltage of Q2. This action is cumulative, and rapidly switches Q1 "off" and Q2 "on."

So long as the 3 -volt charge remains on $\mathrm{Cl}, \mathrm{Q} 1$ will be held in cutoff and cannot conduct. Cl "reverse charges" through R1, until the base of Q1 becomes sufficiently posi-

Be sure to connect positive leads of electrolytic capacitors to Q1 and Q2 collectors.
tive to allow conduction to begin. Then Q1 begins to turn "on" again, turning Q2 "off" as just described. The process continues in-definitely-as Iong as the battery lasts.

Parts Substitutions. Almost any of the parts may be changed to fit your own availability situation. Npn transistors were used because they were on hand. PNP's can be used by reversing polarity of the battery and the capacitors. Resistor values for R1 and R2 can be anything between 4700 ohms and 33,000 ohms; the larger values will produce a slower wink rate. The capacitors can be larger but appreciably smaller ones are not recommended; the wink rate becomes so rapid the effect is lost. However, do not substitute the more common No. 47 pilot bulbs; they require 250 milliamperes for proper operation, which results in abnormally short battery life.

Should Winky-Dink fail to wink for you, the trouble should not be hard to find. If both lamps light dimly, you probably have a defective or disconnected capacitor. If one bulb lights brightly while the other is out, the capacitor connected to the same collector as the dark bulb is probably shorted. If both lamps light brightly, either both capacitors the shorted or your transistors are defective (either event is rare). If the bulbs wink, but dimly, you probably have weak batteries.

Talk on a Light Beam
 Continued from page 55

Table-top setup for talking on a light beam is shown in the photos. Above, the transmitter or light amplifier is shown, and below, the light-actuated sound amplifier.

shouldn't be expected to work at a range over a couple of feet. If you operate in a darkened room and go to some trouble in positioning the lamp and solar cell relative to each other, you can gain some range. For longer distances you need an amplifier with greater gain and power output handling capability and a larger bulb (perhaps a \#47) with a better focusing system. For demonstration purposes at Science Fairs, you can use your hand as a volume control. Slowly place your hand between the lamp and solar cell. The volume of the signal transmitted on the light beam will be reduced and eventually eliminated.

Tape Testing Made Easy
Continued from page 72

of tape; the tape which plays back the two tones within a few db of each other is obviously the tape to use. But note that there may well be a difference in output levels, and a tape may deliver several db greater output. Do not be influenced by output level, since the high level tape might deliver a poor high frequency response from your recorder (it might be great tape for another recorder). Standardize on the tape that delivers the best high frequency response, any recorder has enough extra gain to compensate for a lower output level.

Special Service Note. The average tape recorder user often does not realize that a single combination record/playback (R / P) head goes out of alignment. This is because even if the head goes severely out of alignment, the playback azmuth is exactly the same as the record azmuth-it must be because the same head is used. However, should the user attempt to playback a prerecorded tape-which is usually in perfect alignment-then he would notice a muldy muffled sound. Even if you never use prerecorded tapes your R/P head should be in perfect alignment-it's the only way you'll be able to swap tapes with friends and still get maximum fidelity.

Even if you lack an alignment tape, alignment is a simple procedure; and once done, you can use the tester to make a Master Test Tape. Preferable, borrow a prerecorded tape (alignment tapes are hard to borrow). If you can't, use an old tape-one made when the recorder was brand new.

Run the tape through the recorder, set the tone control to full treble boost, and using the edge of a Q-tip or your finger, gently skew the tape up and down right after the R / P head (as close as possible). If the highs increase as the tape is skewed, in either direction the head is out of alignment. Demagnetize a screwdriver (or wrench) and adjust the alignment screw for maximum high frequency response-the head is now in perfect alignment. Immediately, clean the heads (erase head too) and make a Master Test Tape. (If yours is a three head recorder the playback head can be aligned using the same procedure.) Once the Master Test Tape is made you can use the simple tests and alignment procedure previously given.

Organs Without Pipes

Continued from page 51
pressed, the switches operate for not only F3, but also for F4 (the over tone), C4, (the fifth tone), and A2 (the hum tone, which is the third tone one octave lowered). The simultaneous sounding of all these keys creates the effect of a chime.

Voicing. From the keyer circuits, the chosen signals go to the voicing circuitry. Here, certain harmonics are removed from the signals by filters so that the remaining signal will be similar to that created by a pipe stopped to the degree chosen by the musician.

Voicing for the swell manual includes 10 stops; four of these are known as "flute" voices and the other six are called "complex". (Sce Fig. 9 of Heathkit organ.)

The flute voices are low in harmonic content, while the complex voices have strong harmonics. To obtain the flute voices, the tone signals are passed through low-pass RC filters which remove the higher harmonics. Since F4, for instance, is the eighth harmonic of F1, a number of different filters must be used to allow F4 to be passed while the harmonics of FI are blocked (the F1 tone goes through a filter which blocks F4, while the F4 tone goes through a different filter which blocks the harmonics of F4).

The four flute voices differ only in pitch. The " 16 -foot" flute sounds tones an octave lower than the keyboard would indicate. The " 8 -foot" flute sounds the normal flute note. The " $51 / 3$-foot" flute or "quint" sounds the tone a musical fifth above the keyboard note selected, and the " 4 -foot" flute or "flute d'amour" sounds an octave higher than the keyboard.

The fifth octave of the frequency rangethe one above that covered by the master oscillators-is created by bandpass filtering in the flute circuitry; it is used only to sound the upper notes of the keyboard when the "flute d'amour" stop is chosen.

The six "complex" voices of the swell inclucle three " 16 -foot" stops, all of which sound an octave lower than the note struck; and three " 8 -foot" stops, which sound the note selected. The 16 -foot stops are "diapason," "bass clarinet," and "trumpet," while the 8 -footers are "English horn," "violin," and "oboe."

All are created by passing tone signals through high-pass, low-pass, and bandpass
filters in various combinations, to remove all undesired harmonics and leave only those present in similarly-named stops of a pipe organ.

The great manual offers a choice of four voicing stops, all of which produce the notes chosen on the keyboard rather than producing notes an octave or more away. All four of these voices are complex; they are produced by filtering action also.

The pedal keyboard has two stops, "8foot" and " 16 -foot," plus a third switch which selects both together. The 8 -foot stop sounds the note selected, while the 16 -footer sounds an octave lower. If both are chosen, both notes will sound together when a single pedal is pressed. The pedal tones are filtered through a low-pass RC network to remove most high harmonics, leaving a "full-bodied" tone composed primarily of fundamental frequency.

Reverberation. While the "color" or voicing, as determined by the voicing filter circuitry, is an important part of the "organ sound," it's not all there is. An equally important component is the reverberation pattern created for a pipe organ by the large number of pipes spread over a wide physical area. In electronic instruments, this pattern is simulated by use of a device known as a Leslie speaker.

Tremolo \& Vibrato. The Leslie speaker consists of a speaker coupled to a special horn; the horn rotates at right angles to the direction of the speaker, and disperses the sound over a wide area while at the same time impressing a combination of amplitude and phase modulation upon all of the sound waves, by its rotation.

Speed of rotation of the Leslie speaker is

Fig. 8. Simplified schematic showing the diode switching used in the Heathkit organ.

Fig. 9. Photo of left side of keyboards shows complex switching used to get voicing.
under control of the musician. Two speeds are available. In "tremolo" position, the horn rotates at about 360 RPM , or 6 cycles per second, adding a tremolo effect to the music but not producing a discernible tone of its own. In "celeste" position, rotation is slowed to 42 RPM, or $7 / 10$ cycle per second, producing a "fluttering" effect very like that of a large pipe organ. If desired, the Leslie speaker may be turned off and the conventional main speakers used alone.

In some instruments, the proper reverb pattern has been achieved by use of electromechanical reverberation units. However, such units have not seen wide acceptance; the Leslie speaker is used on the majority of today's instruments.

Another characteristic of organ sound is a vibrato effect. In the original pipe organs, this was due to random variations in air pressure. In the electronic instruments, it is produced by special vibrato circuits which frequency-modulate the master oscillators to produce an almost undetectable fluctuation of pitch during each note. Frequency variation is at the rate of about 6 cycles per second, when vibrato is selected by the organist. Like all other effects in the organ, vibrato may be turned off when desired.

Amplification. To build the final organ output signal up to proper loudness (a pipe organ has a big sound), an amplifier must follow all the tone generating, keying, and voicing circuits. This amplifier is much the same as an ordinary hi-fi circuit-and in fact, hi-fi amplifiers have been used in many home-built organs.

Following the amplifier, of course, comes a speaker to convert the signal to sound. Unlike the amplifier, though, the speaker need
not be the ultimate in hi-fi. When the designer plans the entire organ, he can frequently hold cost down somewhat by using less perfect speakers which do have some coloration and character of their own-and then taking these speaker characteristics into account in the design of his voicing systems. Thus the speaker must be considered as a part of the complete organ, rather than as simply a conversion device hung onto the end. An excellent example of this technique is the use of the Leslie speaker already described, to produce the reverb pattern.

Or, in other words, attempts to "improve" upon an organ by putting in a high-grade hifi speaker will usually result in noticeably poorer and less life-like sound from the instrument.

Other Electronic Instruments. The organ is not the only instrument which may be duplicated by electronics. At least one firm markets an electronic piano, which allows private practice by the use of headphones. In addition, a number of purely-electronic instruments such as the Theremin have entered the musical field-and several motion pictures have been produced in which the entire music background has been produced by electronic instruments.

What's more, a number of scientists have worked out systems in which digital computers are programmed to follow the rules of musical composition, then compose and perform non-human works, by controlling electronic instruments. The similarities between electronic organs and computers have already been brought out in this article. Maybe in another 100 years or so musicians, too, will suffer from "technological unemployment!"

Current Clamp
 Continued from page 58

ohms, volts, and amperes. Take 0.6 volts as the average diode voltage for a silicon power diode and trim R1 as needed in use.

Measured performance of the Current Clamp is shown graphically. You can see that output voltage changes very little until the clamping point is reached, at which time current holds virtually constant and voltage drops off. These measurements were made with ordinary bench instruments, and no corrections for resistor tolerance or meter error have been included; thus you find such items as 1.25 volts driving 11 ma. through a 100 -ohm load. Settings for the tests were $11 / 2$ volts supply and 24 -ma. clamping level. A 100 -ohm variable resistor furnished the load.

Set Up. To set up the Current Clamp, once built, follow this procedure. First remove the load and connect a VTVM across the "output" terminals (where it remains throughout the tests unless needed elsewhere), and connect the "input" terminals to an adjustable regulated power supply. Then adjust the power supply for desired value of output voltage as read on the VTVM.

Next, set R1 to its maximum value, connect a milliammeter of appropriate range to the "output" terminals of the Clamp, and short-circuit the output side of the meter. Now set R1 for any desired maximum current flow.

Then connect a load of sufficient resistance to approximate the expected current flow in the circuit to be checked, and measure the output voltage to see how much of it has been changed by the adjustment of R1. If it has changed, readjust the power supply to compensate. Then again short the output terminals and re-set R1 for desired maximum current. This process sometimes must be repeated a third time, but more frequently the initial adjustment holds without even a touch-up.

When the milliammeter indicates maximum desired current on short-circuit load, and the VTVM indicates desired output voltage with approximately the desired load, remove the load resistors and connect to the circuit to be tested, confident that no components are going to be cooked by excessive current before you can turn things off. It's a most secure feeling!

Static Caper
Continued from page 82

months, a temptation would have really hit the spot. But suddenly it began to bug me, I was actually taking Tefnut seriously. Like maybe if I hung around much longer, yours truly would be as crazy as Von Kirk.

That following night (which was complete with sand storm and zero visibility outside) we set exactly the same computer combination with some very slight variations as calculated by the professor.

Just like clockwork her voice came through. "This is Tefnut calling Inverse 7." Then we got a picture on the screen too. Tefnut was everything we lacked in the local Adindan talent. If you can imagine the rarest of DX in female form, that's Tefnut.

Von Kirk was so excited his hands were trembling.
"You are to dispatch agent 63333 to Southern Adindan and abduct he who is second-in-command at the secret radio relay station there."

I turned several different shades of aqua.
"Ignore the old man. He is already considered slightly insane and will not be believed." Tefnut stood up. "But the younger one is a suitable subject for rehabilitation."

Von Kirk dashed across the room and threw the main switch. "You must take the government plane and fly out of Adindan at once."

Calm now, I pointed to the storm outside.
"When there is visibility."
So now I have two choices. That storm will probably move on before Inverse agent 63333 arrives. Or I can stick around and find out just how good a temptress Tefnut really is.

"Pulling Power Is Amazing" entrispuct

Classified Ads only 55\$ per word, each insertion, minimum 10 words, payable in advance. For information on Classified ads-to be included in our next RADIO-TV EXPERIMENTERwrite C. D. Wilson, Mgr., Classified Advertising, 505 Park Ave., New York, N. Y. 10022.

ADDITIONAL INCOME

START Profitable "Weight Watchers Food Club' Samples $\$ 1.00$. Comidex Corporation, New Canaan 2, Conn.

AUTHOR'S SERVICE

PUBLISH your book! Join our successful authors; publicity advertising promotion, beautiful books. All subjects invited. Send for free manuscript report and detailed booklet. Carlton Press. Dept. SMH, 84 Fifth Avenue, New York 11.

AUTO PARTS \& ACCESSORIES

NEW-Improved-Patented Spark Plug Gap Gauge. Adjusts-Gauges-Centralizes. $\$ 1.00$. Wrona Better Gauge. Box 5968, Chicago, III. 60680.
BOATS, MOTORS \& MARINE SUPPLIES
FULL size, cut-to-shape boat patterns, blueprints. Send 504 for big New illus: trated "Build a Boat", catalog includes Fishing Boats, Garvies, Cruisers, Catamarans, Houseboats-Outboards, Inboards. Sallboats-71/2 to 38^{\prime}. "How" to Buld a Boat ${ }^{\text {a }}$ booklet $\$ 250$. Cleveland Boat Blueprint Co., Box 18250, Cleveland, Ohio.
BOAT Kits! Factory molded fiberglass or pre-assembled plywood. 50 models, $12{ }^{\prime}$ to 30^{\prime} Free catalog. Luger, Dept. UC-65, 8200 Áccess Road, Minneapolis 31, Minn.
COMPLETE RDF Manual. $\$ 3.00$ Postpaid. Phoenix, 1165 Citron, Anahelm, California.

BOOKS \& PERIODICALS

BOOKS 2000 Subjects. Catalog 154. Myers Book Service, Marquand, Mo.

BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ a Year by Mallorder. Helped others to make money! Start with $\$ 10.00$-Free Proof. Torrey, Box 3565-T, Oklahoma City 6. Okla.

FREE Book " "990 Successful, LittleKnown Businesses.'" Fascinating! Work home! Plymouth-8ity. Brooklyn 4, N. Y.
REPAIR Hydraulic Jacks easy-proftable. Write Hydraulic Parts Supply, 3645, El Paso, Texas.
"HOW and Where to Raise Capital" by Colburn, LL.B. Answers your Money Problems. $\$ 1.00$ copy. Write Rogers, Box 779-C, Palm Springs, Callf. 99263.

BUY IT WHOLESALE

BARGAINS! Buy Wholesale! Save Money! Free Catalog! Norris 273-WA, Merrick, Lynbrook, N. Y .
1964 FORDS, Dodges, Chevrolets extaxis $\$ 899.00$. Send for Free Catalog. Autos S.M., 194 Lauman Lane, Hicksville New York.

CAMERAS \& PHOTO SUPPLIES

FREE illustrated photographic bargain book. Central C'amera Co.. Dept. 36-F, 230 So. Wabash, Chicago, Ill.

COINS, CURRENCY \& TOKENS

UNCIRCULATED 1935 Pony Express Silver Commemorative Medal $\$ 1.00$. Coin Lists Free. Sayers, 1000 Unaka, Johnson City, Tennessee.
SELLING Coins reasonable. Free list for stamped envelope. Gene Carliton, Chandler, Oklahoma 74834.
U. S.: Coins: Lists 204. Lund, 200 South Sycamore, No. Platte, Nebraska 69101.

EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carte: Farm-O, Plains, Georgia.

FIREARMS \& AMMUNITION

SILENCERS: Rifies, Pistols, Details Construction, Operation $\$ 1.00$. Gunsco, B373G. Soquel, Calif.

FLORIDA LAND

FLORIDA Water Wonderland: Homesites, Cottages, Mobilesites. Established area. $\$ 390.00$ full price. $\$ 5.00$ month. Swimming, fishing, boating. Write Lake Weir, Box $38-E Y$, Stlver Springs, Florida. AD 6-1070-(F-1)

FOR INVENTORS

PATENT Searches - 48 hour airmail Pervice. $\$ 6.00$, including nearest patent soples. More than 200 registered patent attorneys have used my service. Free Invention Protection Forms. Write Miss ${ }_{176}$, Washing Patent Searcher, P. O. Box 176, Washington 4, D. C.

GIFTS THAT PLEASE

1000 NAME and Address Labels $\$ 1.00$. Request Circular. Roy LaParl, 1513 Springwells, Detroit, Mich. 48209.

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free Ifterature. Smith-McKinley, quick Box ! Free Itterature Smith-M

SLEEP-Learning-Hypnotism! Strange SLEEP-Learning-Hypnotism! Strange
catalog free! Autosuggestion, Box $24-\mathrm{TV}$, Olympia, Washington.

INVENTIONS WANTED

INVENTORS! We will devlop, sell your idea or invention patented or unpatented. Our national manufacturer-clients are urgently seeking new items for highest outrlght cash sale or royalties. Financial assistance available. 10 years proven performance. For free information, write Dept. 7, Wall Street Invention Brokerage, 79 Wall Street, New York 5, N. Y.

MAILING LISTS

MAILING Lists. 1000 Guaranteed Proven Names and Addresses $\$ 4.50$. Miko 9, Maryland. 6203 Veroene Avenue, Baltimore 9, Maryland.

MONEYMAKING OPPORTUNITIES

FOR Money Making Opportunities, Business Building Offers. Write Toiocar, 2907-A West 39th Place, Chicago, IIl. 60632 .

- Make Your Classified Ad Pay. Get MHAKE Your Classified Ad Pay. Get
'How, To Write a Classified Ad That
Puls., This handbook tells how with Pulls." This handbook tells how, with toward classified ad in $S \& M$. Send $\$ 1.00$ to C. D. Wilson. Science \& Mechanics. 505 Park Ave., New York, N. Y. 10022.

PATENT SERVICE

PATENT Searches, $\$ 6.00$! For free ' 1 Invention Record" and "Important Information Inventors Need," write Miss Hayward $1029 \cdot \mathrm{D}$ Vermont, Washington 5 , D. C

PERSONAL

LIFE Begins At 40. Booklet And Big Mail 254. V.D.B., S.M., Box 753, Nokomis, Florida 33555.
SCALP Hair Care: Men, Women, Try European Lotions, Money Back Guarantee. International Laboratories, 5462 Merrick Rd., Massapequa, N. Y.

PETS-DOGS, BIRDS, RABBITS, ETC.

MAKE big money raising rabbits for us. Information 254. Keeney Brotheris. New Freedom, Penna.

PROFITABLE OCCUPATIONS

INVESTIGATE Accidents. Earn $\$ 750.00$ to $\$ 1,500.00$ monthly. Car furnished. Expenses paid. No selling. No college education necessary. Plck own job location in tion necessary. Plck own job location in
U . S ., Canada or overseas. Investigate full time. Or earn $\$ 8.44$ hour spare time full time. Or earn $\$ 8.44$ hour spare time Men urgently needed now. Write for Free information. Absolutely no obligation Universal, CMH, 6801 Hillcrest, Dallas 5 Texas.

RADIO \& TELEVISION

CONVERT any television to supersensitive, big-screen oscilloscope. No electronic experience necessary. Only minor changes required. Illustrated plans $\$ 3.00$. Relco-A-30, Box 10563. Houston 18, Texas.
McGEE Radio Company, Big 1965-176 Page Catalog sent Free. America s Best Values, HiFi-Amplifiers-Speakers-Electronic Parts, 1901 McGee St., Dept. RTV, Kansas City, Mo
$\$ 1.00$ DELIVERS Plastic Packets for 60 QSL's. Tepabco, Boyers Ave., Gallatin. Tennessee.
FREE Electronics Catalog. Tremendous bargains. Electrolabs. Dept. C-E30NN. Hewlett. New York 11557 .
AMAZING new two transistor power amplifier module and dynamic mitcrophone complete P.A. speaker and battery makes Complete P.A. system. Send only $\$ 6.98$. Quantities limited. M. Roth,
Avenue, Cranford, New Jersey.

RUBBER STAMPS

MIRACLE-Multi-Colors. 32-Page Booklet 25\%. V.D.B., Box 753, Nokom1s, Florida 33555.

SONGWRITERS

POEMS Wanted for musical setting and recording Send poems. Free Examination. Crown Music, 49-SC West 32, New York 1 .

SPECIAL SERVICES

BIble Lessons Free. Home Bible Studies, Box 316 A, Elkhart, Ind. 46515.

STAMP COLLECTING

ATTRACTIVE Set Free. U. S, World: wide approvals. Gorlliz, Drawer 388DS Park Ridge, Ill.

TREASURE FINDERS-_PROSPECTING

 EQUIPMENTNEW supersensitive transistor lacators detect buried gold, silver, coins. Kits, assembled models. $\$ 19.95 \mathrm{up}$. Underwater models available. Free catalog. RelcoA30, 10563, Houston 18, Texas.

ELECTRONIC PARTS

1. This catalog is so wiclely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
2. The new 516 -page 1965 edition of Lafayene Radio's multi-colored cata\log is a perfect buyer's guide for hifi'ers, experimenters. kit builders, CB'ers and hams. Get your free copy, today!
3. Progressive "Edit-Kits" Inc. now has available their new 1965 catalog featuring hi-fi, CB, Amateur, test equipment in kit and wired form. Also lists books, parts, tools, etc.
4. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
5. Unusual scientific, optical and mathematical values. That's what $E d$ mund Scientific has. War surplus equipment as well as many other hard-to-get items are included in this new 148 -page catalog.
6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in merchandise available, including a giant $\$ 1$ special sale.
7. Whether you buy surplus or new, you will be interested in Fair Radio Sales Co.'s latest catalog-chuck full of buys for every experimenter.
8. Want a colorful catalog of goodies? John M/eshura, Jr. has one that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts, etc. All at unbelievable prices.
9. Are you still paying drugstore prices tor tubes? Nationwide Tube Co. will send you their special bargain list of tubes. This will make you light up!
10. Burstein-Applebee offers a new giant catalog containing 100's of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
11. Now available from EDI (Electronic Distrihutors, Inc.) a catalog containing hundreds of electronic items. $E D /$ will be happy to place you on their mailing list.
12. VHF listeners will want the latest catalog from Kuhn Electronics. All types and forms of complete receivers and converters.
13. No electronics bargain hunter should be caught without the latest copy of Radio Shack's catalog. Some equipment and kit offers are so low. they look like mis-prints. Buying is believing.
14. Unusual surplus and new equipment/parts are priced "way down" in a 32-page flyer from Edlie Electronics. Get one.

HI-FI/AUDIO

15. Here's a beautifully presented brochure from Altec Lansing Corp. Studio-type mikes. two-way speaker components and other hi-fi products.
16. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speak. ers and the new AR turntable.
17. Garrard has prepared a 32 -page booklet on its full line of automatic booklet on its full line of automatic first automatic transcription turntable. Accessories are detailed too.

18 Two brand new full-color booklets are being offered by ElectroVoice, Inc. that every audiophile should read. They are: "Guide to Outdoor High Fidelity" and "Guide to Compact Loudspeaker Systems."
19. A valuable 8 -page brochure from Empire Scientific Corp. describes technical features of their record playback equipment. Also included are sections on basic facts and stereo record library.
20. Tape recorder heads wear out. After all, the head of a tape deck is like the stylus of a phonograph, and Robins Industries has a booklet showing exact replacements. Lots of good info on how the things are built, too.
21. Wharfedale, a leading name in loudspeakers and speaker systems, has a colorful booklet to send to you on its product line. Complete with prices, it is a top-notch buyers guide.
22. A wide variety of loudspeakers and enclosures from Utah Electronics lists sizes shapes and prices. All types are covered in this 16-page heavily illustrated brochure.
24. Here's a complete catalog of high-styled speaker enclosures and loudspeaker components. University is one of the pioneers in the field that keeps things up to date.
26. When a manufacturer of highquality high fidelity equipment produces a line of kits, you can just bet that they're going to be of the same high quality! H. H. Scott, Jnc., has a catalog showing you the full-color, behind-the-panel story.
27. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
28. Very pretty, very efficient. that's the word for the new Betacam intercom. It's ideal for stores, offices, or just for use in the home, where it doubles as a baby-sitter.
30. Tone-arms, cartridges, hi-fi, and stereo preamps and replacement tape heads and conversions are listed in a complete Shure Bros. catalog.

TAPE RECORDERS AND TAPE

31. "All the Facts" about Concord Electronics Corporatian tape recorders are yours for the asking in a free booklet. Portahle battery operated to four-track, fully transistorized stereos cover every recording need.
32. "The Care and Feeding of Tape Recorders" is the title of a booklet that Sarkes-Tarzian will send you. It's 16-pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
33. Become the first to learn about Norelco's complete Carry-Corder 150 portable tape recorder outfit. Fourcolor hooklet describes this new car-tridge-tape unit.
34. The 1964 line of Sony tape recorders, microphones and accessories is illustrated in a new 16 -page full color booklet just released by Superscope, Inc., exclusive U.S. distributor.
35. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carry both reel and cartridge recorders you should know about.

HI-FI ACCESSORIES

38. An entirely new concept in customizing electron tubes has generated a new replacement line. Gold Lion tubes give higher output and louer distortion than ordinary production high-fidelity tubes.
39. A 12 -page catalog descrihing the auclio accessories that make hi-fi living a bit easier is yours from S witchcraft, Inc. The cables, mike mixers, and junctions are essentials!

KITS

41. Here's a firm that makes everything from TV kits to a complete line of test equipment. Conar would like to send you their latest catalog-just ask for it.
42. Here's a 100-page catalog of a wide assortment of kits. They're high-styled. highly-versatile, and Hearh Co. will happily add your name to the mailing list.
43. Want to learn about computers the easy way? Brochure from Digication Electronics describes its line of transistorized kits.
44. A new short-form catalog (pocket size) is yours for the asking from EICO. Includes hi-fi, test gear. (B rigs and amateur equipment-many kits are solid-state projects.

AMATEUR RADIO

45. Catering to hams for 29 years, World Radio Lahoratories has a new FREE 1965 catalog which includes all products deserving space in any ham shack. Quarterly fiers, chockfull of electronic bargains are also available.
46. A long-time builder of ham equipment, Hallicrafters, Inc. will happily send you lots of info on the ham, CB and commercial radio-equipment.

CITIZENS BAND SHORT-WAVE RADIO

48. Hy-Gain's new 16 -page CB antenna catalog is packed full of useful information and product data that every CB'er should know about. Get a copy.
49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Cadre Industries has a booklet that answers lots of the questions you may have.
51. If you're a bug on CB communications or like to listen in on VHF police, fire, emergency bands, then Regency Electronics would like to send you their latest specs on their receivers.
52. When private citizens group together for the mutual good, something big happens. Hallicrafters, Inc. is backing the CB React teams and if you're interested in CB , circle $\# 53$.
53. A catalog for CB'ers, hams and experimenters, with outstanding valtues. Terrific buys on antennas, mikes and accessories. Just circle $\# 54$ to get Grove Electronics free 1964 Cata\log of Values.
54. Interested in CB or businessband radio? Then you will be interested in the catalogs and literature Mosley Electronics has to offer.

Also see Item 46.

SCHOOLS AND EDUCATIONAL

56. Bailey Institute of Technology, offers courses in electronics, basic electricity and drafting as well as refrigeration. More information in their informative pamphlet.
57. National Radio Institute, a pioneer in home-study technical training, has a new book describing your opportunities in all branches of electronics. Unique training methods make learning as close to being fun as any school can make it.
58. Would you like to learn all about television servicing quickly at home? Coyne Electronics Institute would like 10 show you how easy it is, and at a low cost, too.
59. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic school, ask for this brochure from the Indiani Home Srudy Institute.
60. Facts on accredited curriculum in E. E. Technology is available from Central Technical Institute plus a 64 page catalog on modern practical electronics.
61. ICS (International Correspondence Schools) offers 236 courses including many in the fields of radio, TV, and electronics. Send for free booklet "It's Your Future."

ELECTRONIC PRODUCTS

62. Information on a new lab transistor kit is yours for the asking from Arkay International. Educational kit makes 20 projects.
63. A complete booklet and price list giving you the inside data on Schober Organs are yours for the asking.
64. If you can use 117 -volts, 60 -cycle power where no power is available, the Terado Corp. Trav-Electric 50-160 is for you. Specifications are for the asking.
65. Want power plus for your acto? New Transistorized Ignition adds 20% more MPG. 3 to 5 times more spark plug life. Lower maintenance cost. Free catalog and instruction booklet.
66. Get the most measuremient value per dollar." That's what Electronic Measurements Corp. says. Looking through the catalogue they send out, they very well might be right!

TELEVISION

70. The first entry into the color.-TV market in kit form comes from the Heath Company. A do-it-yourself money saver that all TV watchers should know about.
71. Attention, TV servicemen! Barry Electronics "Green Sheet" lists many TV tube, parts, and equipment tuys worth while examining. Good values, sensible prices.
72. Get your 1964 catalog of Cisin's TV, radio, and hi-fi service books. Bonus-TV tube substitution guide and trouble-chaser chart is yours for the asking.

SLIDE RULE

74. Get your copy of CIE's (Cleveland Instiute of Llectronics) 2-color data sheet on their electronics slide rule and information on their free "Auto-Programmed" 4-lesson instruction course.

TOOLS

78. Do more jobs with fewer tools. Xcelite bullet in N 563 describes doubleduty midget-nut and screwdriver sets that have power and reach of standard drivers.

Radio-TV Experimenter, Dept. LL-740
505 Park Avenue, New York, N. Y. 10022
Please arrange to have the literature whose numbers 1 have encircled sent to me as soon as possible. I am enclosing 25 (no stamps) to cover handling charges.

	1	2	3	4	5	6	7	8	9	10	11	12	13
Be	14	15	16	17	18	19	20	21	22	23	24	25	26
Sure To													
Enclose	27	28	29	30	31	32	33	34	35	36	37	38	39
254	41	42	43	44	45	46	47	48	49	50	51	52	
	53	54	55	56	57	58	59	60	61	62	63	64	65
	66	67	68	69	70	71	72	73	74	75	76	77	78

NAME (Print clearly)
ADDRES5
CITY
STATE

Volume 43, No. 3

An up-to-date Broadcasting Directory of North American AM, FM and TV Stations. Including a Special Section on World-Wide Short-Wave Stations

This is the third and last part of White's Radio Log, now published in three parts twice each year. This format presentation enables the Editors of Radio-TV ExperiMENTER to offer its readers two complete volumes of White's Radio Log each year, while increasing the scope of the \log and its accuracy.
In this issue of White's Radio Log we have included the following listings: U. S. AM Stations by Call Letters, U. S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, Cuban and Mexican AM Stations by Call Letters, and the World-Wide Short-Wave Section.

In August-September, 1965 issue of RadioTV Experimenter, Volume 44, No. 1, the Log will contain the following listings: U. S.

AM Stations by Frequency, Canadian AM Stations by Frequency, U. S. Television Stations by States, Canadian Television Stations by Location and the World-Wide ShortWave Section. In the event you missed a part of the Log published during the first half of 1965 , you will have a complete volume of White's Radio Log by collecting any three consecutive issues of Radio-TV ExperimenTER during the remainder of the year. The three consecutive issues are an entire volume of White's Radio Log that offers complete listings with last minute station change data that are not offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's format an unbeatable and up-to-date reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Call Letters. 99
U.S. FM Stations by Call Letters... 108Canadian AM Stations by Call Letters........ 112Canadian FM Stations by Call Letters........ 113Cuba \& Mexico AM Stations by Call Letters.. 113World-Wide Short-Wave Stations............. 114

U. S. AM Stations by Call Letters

C.L.

Location

KEED Springfield-Eugene, KEEE Nacogdoches, Tex KEEN San Jose, Calif. KEEP Twin Falls, Idaho KEES Gladewater. Tex. KEKO Kealakekua, Hawail KELA Centrali
KELD EI Dorado, Ark. KELI Tulsa, Okla.
KELK Elko, Ney,
KELO Sioux Falis, S.Dak.
KELP EI Paso, Tex.
KELY Ely, Nev.
KENA Mena. Ark.
KENE Toppenish, Was
KENI Anchorage, Alaska
KENM Portales, N N. Mox.
KENN Farmington, N.M.
KENO Las Vegas. Nev.
KENY Bellingham-Ferndale.
KEOS Flatstaff, Ariz. Pasco, Wash.
KEPS Eagle Pass, Tex. KERB Kermit, Tex.
KERC Eastland, Tex
KERN Bakersfield, Calif.
KERN Kerville. Tex.
KERV Kerrville, Tex.
KESM Eldorado Sprinos. Mo.
KEST Boise, Idaho
KETO Seattie, Wash
KETO Seattle, Wash.
KETX Livinoston.
KEVA Evanston, Wyo.
KEVL White Castle, La.
KEVT Tucson, Ariz.
KEWB Oakkland, Calif.
KEWI Topeka, Kans.
KEXO Grand Junc: Colo.
KEYD Oakes, N.Dak,
KEYE Perryton, Tex.
KEYJ Jamestown, N.Dak.
KEYR Terrytown. Nebr.
KEYS Corpus Christi, Tex.
KEYY Provo, Utah
KEYZ Williston, N.Dak.
KEZY Anaheim. Calif.
KFAC Los Angeles. Calit.
KFAH Lakewood Center, Wash.
KFAL
KFAM St. Cloud, Minn.
KFAR Fairbanks, Alaska
KFAY Fayetteville, Ark.
KFBB Great Falls. Mont
KFBC Cheyenne, Wyo.
KFBK Sacramento, Calif.
KFDB Redfield; SH Dak.
KFDA Amarilio, KFOR Grand Coulee, Wash. KFEL Pueblo. Colo. KFFA Helena, Ark.
KFGQ Boone, Iowa
KFH Wichita. Kans.
KFI Los Angeles, Calif KFIF Tueson, Ariz.
KFIV Modesto, Calif. KFIB Marshalltown, Wows KFJM Grand Forks, N.Oak KFIZ Ft. Worth. Tex. KFKA Greeley, Colo. KFKU Lawrence, Kans. KFLA Scott City, Kans, KFLI Mountain Home, Ida. KFLJ Walsenbura, Colo. KFLN Baker, Mont
KFLW Klamath Falls, Oreg.
KFMB San Diego, Cal,

Ke.

C.L. Locofion

KFMJ Tulsa, Okla.
KFML Denver, Colo. KFMO Flat River, Mo.
KFNF Shenandoah, lowa KFNV Ferriday, La.
KFNW Fargo, N.Oak.
KFOR Lincoln, Nobr. KFPW Ft. Smith, Ark.
KFQD Anchorage, Alaska KFRA Frankin,
KFRB Fairbanks, Alaska
KFRC San Francisco, Calif. KFRD Rosenberg. Richmond KFRE Fresn.
KFRM Kansas City, Mo KFRO Longview, Tex. KFRU Columbia, Mo. KFSB Joplin, Mo.
KFSC Denver, Colo.
KFST Ft. Stockton, Tex. KFTV Paris, Jex. KFTW Frederickstown, Mo.
KFUN Las Vegas. N. Mex. KFUO Clayton, Mo. KFVS Cape Girardeau, Mo.
KFWB Los Angeles, Calif. KFXD Nampa, Idaho KFXM San Bernardino, Calif. KFYN Bonham, Tex. KFYO Lubbock, Tex.
KFYR Bismarck. N.D KGA Spokane, Wash. KGAF Gainesville. Tex. KGAK Gallup, N,Mex
KGAL Lebanon, Oreg. KGAR Vancouver, Wash KGAS Garthage, Tex.
KGAY Salem, Oreg. KGB San Diego. Calif KGBA Santa Clara KGBC Galveston. Tex.
KGBS Los Angeles, Calif. KGBT Harlingen. Tex. KGBX Springtield, Mo KGCA Rugby, N. D. KGCX Sidney, Mont. KGDN Edmonds, Wash. KGEK Sterlino, Colo. KGEM Boise, Idaho KGER Long Beach, Calif, KGEZ Kalispell, Mont.
KGFF Shawnee, Okla KGFF Shawnee, Okla. KGFJ Los Angeles, Calif.
KGFL Roswell, N. Mex. KGFW Roswell, N.Mex KGFX Pierre, S.Dak. KGGM Altuquerque, N.Mex.

K400| 690 |
| :--- |
| 440 |450 Falis,

Minn.
KGHT Hollister, Calif.

1050 1240
1620
16
12
12
12
120 920
1600
900 1600
900
1240 KGYN Guymon, Okla KHAK Cedar Rapids, lowa KHAL Homer, La. KHAR Anchorage, Alaske KHAS Hastings, Nebr. KHAT Phoenix, Ariz KHBC Hilo, Hawaii KHBM Monticello, Ark.
KHBR Hillsboro. Tox. KHDN Hardin, Mont. KHEM Big Springs, Tox. KHEN Henryetta, Okla KHEP Phoenix, Ariz.
KHER Santa Maria, Calt. KHEY E! Paso. Tex KHFi Austin, Tex. KHHH Pampa, Tex. KHIP Albuquerque, N. M. KHJ Los Angeles, Calif. IKHMO Hannibal, Mo. KHOB Hobbs, N.Mex. KHOE Truckee, Calif. KHOG Fayetteville, Ark. KHOK Hoquiam, Wash. KHOS Tucson, Ariz. KHOW Denver, Colo. KHOZ Harrison, Ark KHa Spokane. Wash. KHRT Minot, N, D.
KHSJ Hemet, Catif. KHSL Chico, Calif. KHUM Santa Rosa, Calif. KHUZ Borger, Tex. KHVH Honolulu, Hawaij KIBE Palo Alto, Calif. K।BL Bewaile, Tex. KIBL Beeville, Tex KICA Clovis, N.M.
KICD Spencer, Iowa KICK Springfiold, Mo. KICM Golden, Colo. Kico Calexico, Calif. KiCS Hastings, Neb. KICY Nome, Alaska KID Idaho Falls, Idaho
KIDD Monterey, Calif. KIDD Monterey, Cali
KIDO Boise, Idaho KIDO Boise, Idaho KIEV Glendale, Calif.
KIFG Iowa Falls, Ia. KIFN Phoenix, Ariz. KIFW Sitka, Alaska KIHN Hugo, Okla. KIHR Hood River, Orea. KIJV Huron, S.Dak. KIKI Honolulu, Hawaii KJKK Pasadena, Tex, KIKO Miami, Ariz. KIKS Sulphur, La. KILO Grand Forks, S.Dak. K KGIW Alamosa, Colo.
KGKL San Angelo, Tex
KGKL San Angelo,

```\(x\).
```

KGLC Miami, Okla.
1480
900
$\begin{array}{r}900 \\ 1450 \\ \hline\end{array}$

1050
1310
KGMB Honolulu, Hawaii
KGM Englewood, Colo,
240 KGM1 Bellingham, Wash
1530 KGMO Cape Girardeau, Mo.
1380
1440
159
1440
1580
1070
1070 KGNB New Braunfels. Tex. 960 KGNC Amarillo, Tex.
970 KGNO Dodge City, Kans.
680
1360
1360
1260 KGOL San Francisco, Calif.
K30 KGOS Torrington wyo.
KGPC Grafton, N. Dak.
KGPC Grafton, N.Oak
KGRI Henderson, T8x.
KGRI Henderson, Tex
KGRL Bend, Oreg.
KGRN Grinnell, Jow
KGRS Pasco, Wash.
KGRS Lasco, Wash.
KGST Fresno, Calif. KGUN Georgetown, Tex. KGUC Gunnison, Colo. KGUD Santa Barbara, Callf. KGUL Port Lavaca, Tex. KGVL Greenville, Tex. KGVO Missoula, Mont.
KGVW Belgrade, Mont. KGVW Belgrade, Mont KGWA Enid, Okla.
760 KGY Olympia, Wash.

C.L. Location	Kc	Location	Kc	C.L. Location	Kc.	ocation	
KLZ Denver, Colo.	560	KOGA	930	K	12	KRUX Glendale, Ariz.	60
KMA Shenandoah, Lowa	960	K0GO San Diego, Calif.	0	KPQ Wenatchee.	560	$K R V C A$	50
KMAC San Antonio. Tex.	630	KOGT Orange, Tex.	1600	KPRB Redmond, Oreg.	1240	KRVN Lexington, Nebr.	010
KMAD Madill, okla.	1550	KOH Rene. N	63	KPRC Houston, Tex.	950	KRWB Roseau, Mi	1410
KMAE McKinney, Tex.	1600	KOHISt. Helens, Ore,	1600	KPRK Livingston, Mont.	1340	KRXK Rexburd. Idaho	0
KMAK Fresnn. Calif.	1340	KOHO Honolulu, Hawai	1170	KPRL Paso Robles, Calif.	1230	KRYS Corpus C	1960
KMAM Butl	1530	KOHU Hermiston, Oreg.	1570	KPRM Park Rapids, Minn.	1240	KRYT Colo. Springs, Colg.	1530
KMAN Manhattan,	135	KOIL Omaha, Nebr.	1290	KPRO Riverside. Calif.	1440	KRZE Farmington, N.M.	1280
KMAQ Maquoketa, low	1320	KOIN Portland. Or	97	KPRS Kansas City, Mo.	1590	KRZY A	80
KMAR Winnsboro, La.	1570	K0JM Havre, Mont.	$\begin{array}{r} 610 \\ 1550 \end{array}$	KPST Preston, Idaho	$\begin{aligned} & 1260 \\ & 1340 \end{aligned}$	KSAL Salina.	1150
KMAS Shelton, Wash.	1280 980	KOKA Shreveport, KOKE Austin. Tex.	$\begin{aligned} & 1550 \\ & 1370 \end{aligned}$	KPTL Carson City. N	1300	KSAM Hunts	490
KMBC Kansas Gity, M KMBL Junction, Tex.	$\begin{array}{r} 980 \\ 1450 \end{array}$	KOKL Okmulgee, OkI	1240	KPUB, Pueblo, Colo.	1480	KSAY San Franeiseo, Calif.	10
KMBY Mouterey, Calif.	1240	K0k0 Warrensburg, Mo.	1450	KPUG Bellingliam, W	1170	KSBW Salinas, Callif.	1380
KMCD Fairfield, lowa	1570	KOKX Keokuk. Iowa	1310	KQAQ Austin, Minn.	970	KSCB Liberal, Kans.	0
K MCM Mc Minuville, Oreg.	1260	KOKY Little Rock. Ark.	1440	KQCY Quincy, Calif.	1370	KSCJ Sioux City, 10	0
KmCo Conroe, T	900	KOL Seattle, Wash.	1300	KQEN Rosebur	1240	KSCO S	80
KMDO Ft. Scott, Kan	1600	KOLD Tucson, Ariz.	14				
KMED Mediord, Oreg.	1440	K0LE Port Arthur, T	1340	KQM	1200		1330
KMEL Wenatchee, Wash.	340	K0L	$\begin{array}{r} 1150 \\ 1420 \end{array}$	KQOT Yakim	$\begin{array}{r} 1400 \\ 940 \end{array}$	KSDR Waterto	80
EN San Bernardino, Califor	1290	$\begin{aligned} & \text { KOLL H } \\ & \text { KOLM } \end{aligned}$	1520	KQRS Golden Valley. Minn.	1440	KSEE Santa Maria, Ca	1480
KMER		Kolo Ren	20	KQTE Missoula, Mo	1340	KSEI Pocatello, Idaho	30
M ${ }^{\text {L }}$ M Marshall, Minn.	1400	KOLR Sterling	1490	KQV Pittsburgh, Pa.	1410	KSEK Pittsburg. Kan	1340
MHT Marshall. Tex	1450	KOLS Pryor, ukla.	1570	KQXI Atla	790	K	50
KMIL Cameron, Te	1330	KOLT Scottsbluff, Nebr.	1320	KQYX Joulin,	00	KSEM Moses Lake Wash.	70
KMIN Girants	980	KOLY Mobridge, S.Dak	1900	KRAC Alamopor	0		50
KMIS Portagevilla, M	1050	KOMA Okla. City. okla	20	KRAD E. Grand Forks, M		KSEO Durant. Okla.	750
M F Fesno. Calif.	80	KOME Tulsa, Okla.	1300	KRAF Reedspor	1470	KSEW EIPaso.	
KMLB Monroe, La.	1440	K0MO Seattle, Wast	1000	KRAI Craig,	550	KSEW Sita, Alaska	
KMMJ Grand Island, N	750	KOMW Omiak, Wash.	680	KRAK Sacramento, Cal.	1240	KSEY Seymo	860
KM MO Marshall, Mo.	1300	KOMY Watsonville, Calif.	1340	KRAL Rawlins, Wy	1240	A	860
MNS Sioux City, Iow	20	KONE Reno, Ne	1450	KRAN		KSFO San Francisco, Calif.	60
KMO Tacoma, Wash.	1360	KONG Visalia, Cali	1400		1280	KsFo San rrancisco, Calir.	
KMON Great Falls, M	560	KONI Spanish Fork, Utah	1480	KRA A Lufkin. Tex.	1340	KSGT Jackson, w yo	1340
KMOP Tueson, Ariz.	1330	KONO San Antonio, Tex.	860		1470	KSHA Medford, Ore.	60
KMOX St. Louis, Mo. KMPC Los Angeles, C	$\begin{array}{r} 1120 \\ 710 \end{array}$	KONP Port Allgeles. KOOK Billings, Mont.	1450 970	KRBi St. Peter. Minn.	1310	KSIB Creston, Iowa	520
KMRC Morgan City, La.	1430	KOOL Phoenix, Ariz	0	KRBN Red Lodge, Mont.	1450	KSID Sidney, Nebr.	
KMRE Anderson, Cal.	1580	K000 Omaha, Nebr.	1420	KRCB Council Bluffs. ía.	1360	KSIG Crowley. La.	0
KMRS Morris, Minn.	1230	K00S Coos Bay, Ore	1230	KRCK Ridgecrest. Calif.	360	KSIL Silver City, N.	0
KMSL Ukiah, Calif.	1250	KOPR Butte, Mont.	550	KRCO Prineville. Oreg.	690	KSIM Sikestan, Mo.	
KMuL Muleshoe. Tex	1380	KOPY Alice.	1070	KRDD Roswell, N. M.	1320	KSIR Wichita. Kan	
KMUR Murray, Utah	230	KOQT Bellingham, Wash.	1550	KRDG Redding, Calis.	1230	KSIS Sedali	0
KMUS Muskogee. OkI	1380	KORA Bryan, Tex.	1240	KRDO Colo. Springs, Col	1240	KSIW Woodward. 0	0
KMVI Wailuku, Hawa	50	KORC Mineral Wells, Tex.	1140	KRDR Gresham, Ore.	1230	KSIX Coruus Christi	
KMYC Marysville, Calif.	1410	KORD Pasco. Wash.	10	KRDS Tolleson, Ariz.	1190	KSJB Jamestown. N.	
KNAF Fredericksburg, T	0	KORE Eugene, Oreg.	1450	KRDU Dinuba, Calif.	1240		
KNAK Salt Lake City, Utah	1280	KORK Las Vegas. Ne	1340	KREB Shreveport.	980	KSkY Dall	0
KNAL Victoria,	1410	KORL Honolulu, Hawa	650	KRED Eureka, Ca,	1480	KSL Salt Lake City, Utalt	
KNBA Vallejo, Calii.	1190	KORN Mitchell. S.D	490	KREH Oakdale, La	900	KSLM	1390
KNBE Lincoln, Neb.	1530	KORT Grangevilie. Id	1230	KRE Farmington. Mo.		\checkmark Monte	
KNBI Norton, Kan.	1530	KOSA Odessa, Tex.	230	KREK Sapulpa, okla.	${ }^{1550}$	KSLV Monte Vista	1240
NBR San Francisco,	680	KOSE Osceola, Ark	860			K	
KNBY Newport, Ark.	1280	KOSG Panshuska, 0	1500	KREM Suokane. Wash	970	KSMA Santa Maria, Cali	1240
NCK Conc	1390	KOSI Aurora, Colo	1430	KREN Rento	1420	KSMN Mason City lowa	
KNCM M	1230	KOSY Texarkana. A	790	KREO Indio, Calit	1400	KSMN Mason City. lowa	
KNCO Garden Gity, Kans.	1050	KOTA Rapid City, S.Da	1380	KREW Sunnyside, was		KSNN	
KNCY Nebraska City, Neb	1600	KOTE Fergus Falls, Min	1250	KREX Girand Junc.uGo	920 1390	KSNO Asuen. Colo.	
KNDC Hettinger, N. Dak.	1490	KOTN Pine Bluft	12300	KRFS Supe		KSNY Sily	
NDI Honolulu, Hawa	1270	K0UR Independe	1220	KRGI Grand I sland, Neb.	1430		
KNDY Marysvilile, Kal	${ }^{1570}$	KOVC Valley Gity. N. Dak	1490	KHGV Weslasco, Tex.	0	KSOK Arkansas City. Kan	0
EA So	970	KOVE Lander. Wyo.	1330	KRHD Duncan, Okla.	1350	KSOL San Francisco, Cal.	1450
NED McAlester, Okla.	50	KOVO Prover Utah	960	KRIB Mason City, Lowa	1490	KSON San Diego, Calif.	1240
KNEL Brady, Tex.	490	KOWA Hastings. M	1460	KRIG Odessa. Tex.	1410	Ksod Sluux Fails, S. Dat.	1140
KNEM Nevada, M	1240	KOWB Laramie, Wyo.	1290	KRIH Rayville, La.	,	KSOP Salt Lake City, Uta	
NET Palestine,	1450	Kown Omiaha, Neb.	0	KRIK Roswell. N. Mex	,	KSOX Raymondville, Tex.	240
KNEW Spokane, Wash	790	KOWL Bijou, Cali	1490	KRIO McAllen, Tex.	910	KSPA Santa Paula, Calit.	400
KNEX McPherson.	1540	KOWN Escondido. Cali	1450	KRIZ Phoentix, Ariz.	1230	KSPP Stillwat	
KNEZ Lomıoc, Calif.	960	KOXR Oxnard, Calif.	910	KRKC King City. Calif.	1490	KSPL Diboll. T	60
KNGL Paradise, Calit.	930	KOY Phoenix, Ariz.	0	KRKD Los Andeles, Calif.		KSPO Spokane, Wa	
KNGS Hanford, Calif.	620	KOYL Odessa, Tex.	1310	KRKO Everett. Wash.	1380	KSPT Sandpoint, Idaho	1400
NIA Knoxv	1320	KOYN Billings, Mont.	910	KRKT Albany, Or		KSRA Salmon, Idaho	
KNIC Winfield, Kan.	1550	KOZE Lewiston, Idaho	1300	KRLA Pasadena, Calif	1110	KSRC Socorro, N.Me	1290
KNIN Wichita Falls,	99	KOZ1 Chelan. Wash.	1220	Lewiston, Ida		KSRO Santa	
KNIT Abilene.	1280	KOZY Grand Rapids.	1490	Clarkston, W	1350	KSRV Ontario.	80
KNND Cottage Grove, Or	1400	KPAC Port Arthur, Tex					
KNOC Natchiteches,	1450	KPAL Palm Springs, Cal	1450	KRLW Walnut Ridge, Ark.	1320	KSTA Coleman. Tex.	1230 1000
NOE Monroe, La,	540	KPAN Here	860	KRMD Shreveport	1340	KSTB Breckenridge, Tex.	1430
NOG Nogales, Ariz.	1340 970	KPAN Heretord, ${ }^{\text {Kex. }}$ KPAS Banning, Calif.	1490	KRMG Tulsa, okla	740	KSTL St. Louls. Mo.	690
NOP N. Platte, Nebr.	1410	KPAT Berkeley, Calif.	1400	KRML Carmel, Calif.	1410	KSTN Stuektan, C	0
KNOR Norman, Okla.	1400	KPAY Chico, Calif.	1060	KRMO Monett, Mo.	90	KSTP Minneapolis.St. Paul,	
NOT Prescott, Ariz.	1450	KPBA Pine Bluft, Ark	1590	KRMS Osage Beach. Mo.	1150	Minn.	500
KNOW Austin, Tex.	1490	KPBM Carisbad, N.Mex.	740	KRN0 San Bernardino, Calif.	1240	KSTR Grand Junction. Colo.	620
NOX Grand Forks, N.Dak.	1310	KPCA Marked Tree, Ark.	1580	KRNR Roseburg, Orea.	1490	KSTT Davennort. ${ }^{10 w a}$	170
KNPT Newport, Ore.	1910	KPCN Grand Prairie. Tex	730	KRNS Burns, Oreg.	230	KSTV Stepheaville. Tex	510
NUI Makawao, Hawaii	1310	KPDN Pampa, Tex.	1340	KRNT Des Moines. Jowa	1350	KSUB Cedar City, Uta	590
KNUJ New Ulm, Minn.	860	KPDQ Portland, Oreg.	800	KRNY Kearney, Nebr.	1460	KSUD W. Memphis, Ark	30
NUZ Houston, Tex.	1230	KPEG Spokane, Wash.	1380	KROB Robstown. Tex.	1510	KSUE Susanvilie. Calif.	240
KNWC Sioux Falls, S.D	1270	KPEL Lafayette, La.	1420	KROC Rochester, Minn.	1340	KSUM Fairmont. Mi	370
NWS Waterloo, lowa	1090	K.PEP San Angela, Tex.	1420	KROD El Paso, Tex.	0	KSUN Bisbee, Ariz	80
KNX Los Angeles, Call	1070	KPER Gilroy, Calif.	1290	KROE Sheridan, Wyo		KSVC Richieid. Uta	980
OA Denver, Colo.	850	KPET Lamesa, Tex.	690	KROF Abbeville, La,	960	KSVN Ogden, Utah	790
OAC Corvalis, Oreg		KPGE Page, Ariz.	1340	KROP Brawley, Cawif.	3300	KSVP Artesia, N.Mex	O
OAD Lemoore, Calif.	1240	KPHO Phoenix. Ariz.	58	KROS Clinton, lowa	1340	KSWA Graham,	330 940
OAL Price, Utah	12	KPIK Colorado Spras., Colo.	1580	KROW Dallas, Ore.	1260	KSWM Aurora, Mo.	940
KOAM Pittsburg, Kans.	860	KPIN Casa Grande, Ariz.	1260	KROX Crookston, Minn.	1260 1240	KSWO Lawton. Okla,	1380 630
OB Albuquerque. N.Mex.	770	KPIR Eugene, Wash.	1500	KROY Sacramento, Calif.	1240	KSXX Salt Lake City. Utah	630
OBE Las Cruces, N.Mex	1450	KPLC Lake Charles,	1470	KRPL Moscow. Itaho	$\begin{array}{r}1400 \\ 1340 \\ \hline\end{array}$	KSYC Yreka. Catif.	970
KOBH Hot Springs, S. Dak.	580	KPLT Paris, Tex.	1490	KRRR Ruidoso, N. Mex	910	KSYY Alexandria. La.	${ }_{420}$
KOCA Kilgore, Tex.	1240	KPLY Crescent City. Calif.	1540	KRRV Sherman. Tex.	910	KSYX Santa Rosa, N.Mex.	850
K OCY Oklanoma City, Okla.	1340	KPMC Bakersfield, Calif.	1560	KRSA Alisal, Calif.	1570	KTAC Tacoma' Wash.	850 1260
O0A Houston. Tex.	1010	KPNG Port Neches. ${ }^{\text {T }}$	1150	KRSC Othello. Wash.		KTAE Taylor, Tex.	1260 580
KODE Joplin. Mo.	1230	KPOC Pocahontas, Ar	1420	KRSD Rapid City, S. Dak.	$\begin{array}{r}1340 \\ 950 \\ \hline\end{array}$	KTAN Tucson. Ariz.	580
KODI Cody, Wyo.	1400	KPOD Crescent City, Calif.	1310	KIISI St. Louis Park, Minn.		KTAR Phoenix, Ariz.	620 1570
OOL The Dalles, Or	1440	KPOF Denver. Colo.	910	KRSL Russell, Kans.	1490	KTA ${ }^{\text {Krederick. }}$ Okia.	150 600
KODY North Platte, Nebr.	1240	KPOI Honolulu. Hawail	1380 1330	KRSN Los Alamos, N.Mex.	1290	KTBB Tyler. ${ }^{\text {KTBC }}$ Austin, Tex.	590
OEL Oelwein, lowa	950 1150	KP0) Portland, Oreg.			1490	KTCB Malıen, Mo.	
OFE Pullman, Wash.	1150 930	KPOL Los Angeles. Calif.	1540	KRTN Raton, N.Mex.	1490	KTCR Minneqpolis. Mint.	690
KOFO 0 tawan Kans. KOFY San Mateo, Cal	1220	Kpos Post, Tex.	1370	Krun ballinger, Tex. KRUS Ruston, La.	1400	KTCS Fort Smitlic, Ark	1410 1470

MHITEE RADDO ப(OG

C.L. Loeation

KTDO Toledo, Oren. KTEE Idaho Falls, Idaho
KTEL Walla Walla, Wash. KTEL Walla Walla,
KTEM Templo, Tex.
KTEO San Angelo, Tex
KTER Terrell, Tex.
KTFI Twin Falls. KTFO Seminole, Jenn. KTFO Seminole, Tenn.
KTFS Texarkana, Tex. KTHE Thermopolis, Wyo. KTHO Tahoe Valley, C
KTHS Berryville, Ark.
KTHT Houston, Tex. KTHT Houston, Tex.
KTIB Thibodaux, La.
KTIL THlamook, Oreg.
KTIM San Rafael, Calif.
KTiS Minneapolis, Minn.
KTIX Pendieton, Ore.
KTKN Ketchikan, Alaska
KJKR Tucson, Ariz.
KTLD Tullulah, La.
KTLN Denver, Colo.
KTLQ Tahiequah, Okla.
Rusk, Jex.
KTLW Texas City, Tex. KTMN Trumann. Ark. KTMS Santa Barbara. Calif. KTNM Tucumcari, N.Mex. KTOB Petaluma, Cal
KTOC Joneshoro, La
KTOE Mankato Minn
KTOH Lihue, Hawaii
KTOK Oklahoma City, Okla.
Ton Beston, Tex.
KTOP Topeka, Kans.
KTOW Sand Spring, Okia.
KTPA Prescott. Ark.
KTRC Santa Fe, N.M
KTRE Lufkin, Tex.
KTRG Honolulu, Hawali
KTRH Houston. Tex.
KTRI Sioux City, lowa
KTRM Beaumont. Tex.
KTRN Wichita Falls, Tex.
KJRY Bastrop. La.
KTSA San Antonio, Tex.
KTSL Burnett. Tox.
KTSM EJPaso, Tex.
KTTN Trenton, M
KTTR Rolla, Mo.
KITS Spring Mold, Mo.
KTTT Columbus, Nebr.
KTUC Tucson, Ariz.
KTUE Tulia, Tex.
KTW Seattle, Wash.
KTW Seattle, Wash.
KTW0 Casper, Wyo.
KTXJ Jasper, Tex.
KTXO Sherman, Tex.
KTYM Inglewood, Calif.
KUAI Eleele. Kanai, Hawaii
KUAM Agana, Gu*m
KUBA Yuba City, Calit
KUBC Montrose, Colo.
KUBO San Antonio, Tex.
KUDE Oceanside, Calif.
KUDI Great Falls, Mont
KUDL Fairway, Kan.
KUDL Fairway, Kan.
KUDU Ventura, Galif.
KUDY Spokane, Wash.
KUEN Wenatchee, Wash.
KUEQ Phoenix, Arlz.
KUGN Eugene, Oreg.
KUIK Hillsboro, Oreg.
KUiK Hillsboro, Oreg.
KUJ Walla Walia, Wash
KUKA San Antonio, Tex.
KUKL Ukiah, Galif.
KUKU Willow Springs, Mo.
KULA Honolulu, Hawai
KULE Ephrata, Wash.
KULY Ulysses, Kan.
KUMA Pendleton. Orea.
KUNO Corpus Christi. Tex
KUNO Corpus Christi, Tex.
KUOA Siloam Springs, Ark.
KUOM Minneapolis, Minn
KUPD Tempe, Ariz.
KUPI Idaho Falls, Idaho
KURL Billings, Mont.
KURV Edinburg. Tex. 1290
1400

ке.
1230
1260
1260
1490
1400
1840
1570
1270
1570
1270
1250

C.L. Location

KURY Brookings, Oreg.
KUSD Vermillion., S. Dak.
KUSH Cushing, Okla. KUSD Vermillion, S.
KUSH Cushlng, okla. KUSN St. Joseph, Mo.
KUTA Blanding, Utah KUTA Blanding, Utah
KUTI Yakima, Wash. KUTI Yakima, Wash.
KUTT Fargo, N. Dak.
KUTY Palmdale, Calit KUTY Palmdale, Calif.
KUVR Holdredge, Nebr. KUXL Golden Valley, Minn.
KUZN W. Monroe, La. KUZN W. Monroe, La.
KUZZ Bakersfleld. Calif.
KVAL Sauk Rapids, Mi KVAL Sauk Rapids,
KVAN Camas, Wash.
KVAS Astoria, Ore. KVAS Astoria, Ore. KVCK Wolf Point. Nebr. KVCV Reddina, Calif. KVEC San Luis Obispo, Calif.
KVEE Conway, Ark. KVEG Las Vegas, Nev KVEN Vernal, Utah KVEN Ventura, Cal.
KVET Austin, Tex.
KVFC Cortez, Colo. KVFD Ft. Dodge, Iowa KVGB Great Bend, Kans. KVIB Seattle, Wash. KVIL Highland Park, Tex. KVIM New Jberia,
KVIN Vinita, Okla. KVIN Vinita, Okia. KVIP Redding, Calif. KVLB Monahans, Tex.
KVEland. Tex.
KiC Litte Roek. Ark. KVLF Alpine, Tox. KVLF Alpine, Jox.
KVLG LaGrange, Tex
KVLH PaulsValley.
530 KVLL Livingston. Tex 15300 1250 400 KVMC Magnolia, Ark KVMC Colorad City,
KVML Sonora, Callf. KVNI Coeur d'Áleñ, I daho KVNU Logan, Utah KVOB Bastrop, La. KVOD Albuquerque, N. Mex. KVOE Emporia, Kans
KVOG Opden, Utah KVOL Lafayette, La KVOM Morrilton, Ark KVON Napa, Calif. KVOO Tulsa, 0kla.
KVOP Plainview, KVOR Colo. Springs, Colo. KVOU Uvalde, Tex. KVOW Riverton. Wyo.
KVOX Moorhead. KVoy Yuma, Ariz.
KVOZ Laredo, Tex. KVPI Ville Platte, KVRC Arkadelithia, Ark.
KVRD Cottonwood, Ariz. KVRE Santa Rosa, C
KVRH Salida, Coio. KVRS Rack Springs, Wyo.
KVSA McGehee. Ark. KVSF Santa Fe. N.Mex KVSH Valentino, Nobr.
KVSO Ardmore, Okla. K VSO Ardmore, Okla.
KVWC Vernon, Tex. KVWG Pearsall, Jex. KVWM Show Low, Ariz.
KVWO Cheyenne, Wyo. KVYL Holdenville, Okla. KWAC Bakersfleld, Gali
KWAD Wadena, Minn. KWAK Stuttgart, Ark. KWAL Wallace, Idaho
KWAM Memphis, Tenn. KWAT Watertown, S.Dak.
KWAY Forest Grove, Oreg. KWBA Baytown, Tex. KWBB Wichita, Kans.
KWBC Navasota, Tex. KWBE Beatrice, Nebr KWBG Boone lowa
KWBW Hutchinson, KWBW Hutchinson, Kans. KWCB Searcy, Ark.
K
690
730
$\begin{array}{r}730 \\ 1390 \\ \\ \hline\end{array}$

> | 290 |
| :--- |
| 1400 |
| | \begin{tabular}{l}

1290

770

\hline
\end{tabular}

$\begin{array}{r}770 \\ 1060 \\ 980 \\ \\ \\ \hline\end{array}$

1060	KWH HN Fort Smith. Ark.
980	KWH

1450
730
7

1730	KWHW Altus, Okla.
730	KW IC Salt Lake City, Utah
710	KWIK Pocatello, Idaho

Ke.	C.L. Location	Kc.	C.L,	Location	Ke.
910	KWIL Albany, Oreg.	0	K	Yuma, Ariz.	0
690	KWIN Ashland, Oreg	580	KYVA	Gallup, N.Mex.	0
1600	KWIP Merced, Calif.	1580	KYW	Cleveland, Ohio	1100
1270	KWIO Moses Lake, Wash.	1260	KZEE	Weatherford. Tex	220
790	KWIV Douglas, WYo.	1050	KZEY	Tyler. T	690
	KWIZ Santa Ana, Cal	1480	$k z 1 P$	Amarillo. Tex.	1310
1550	KWJJ Portland, Oreg.	1080	KZ1X	Fort Coilins, Colo.	600
1470	KWK St. Louis, Mo.	1380	KZNG	Hot Springs, Ark.	1470
1380	KWKC Abilene, Tex.	1340	KZOE	Princet	1490
1570	KWKH Shreveport, La,	1130	KZOL		1570
1310	KWKW Pasadena, Calif.	1300	K200	Honolulu. Hawai	1210
800	KWKY Des Moines, lowa	1150	KZOT	Marianna, Ark.	1460
800	KWLA Many, La.	1530	Kzow	Globe,	1240
1480	KWLC Decorah, Iowa	1240	KZUN	Opportunity, Wash.	630
1230	KWLM Willmar, Minn.	1340	KZYM	Cape Girardeau, Mo	1220
1340	KWMT Ft. Dodge, lowa	540	KZZN	Littlefleld, Tex	1490
1450	KWNA Winnemucca, Nev.	1400	VOUS	Argentia, Nf	1480
1270	K WNO Winona, Minn.	1230	WAAA	Winston-Salem.	
60	KWNS Pratt, Kans.	1290	WAAB	Worcester, Mass.	1440
920	KWNT Davenport, Iowa	1580	WAAC	Terre Haute, lnd.	1300
1330	KWOA Worthington, MInn.	730	WAAF	Chicaso, 111.	50
970	KWOC Poplar Bluff. Mo.	930	WAAG		470
1250	KWOE Clinton, Okia	1320	WAAK	Dallas, N.C.	960
1450	KWON Bartlesville, Okla.	1400	WAAM	Ann Arbor, Mich.	1600
1300	KWOR Worland, Wyo.	1340	WAAP	Peoria, Ifi:	1350
740	KWOS Jefferson City, Mo.	1240	WAAT	Trenton, N.	1300
1400	KWOW Pomona, Calif.	1600		Gad	570
1590	KWPC Muscatine, lowa	860	WAAY	Huntsrille, Ala.	
570	KWPM West Plains, Mo.	1450	WABA	Aguadilla, P.Rico	850
1340	KWPR Claremore, Okla.	1270	WABB	Mobile Ala	80
1150	KWRC Woodburn, Ore.	940	WABC	New York.	770
1360	KWRO Henderson, Tex.	1470	WABD	Ft, Campbell,	1370
1470	KWRE Warrenton, Mo.	730	WABF	Fairhop	1220
1600	KWRF Warren, Ark,	860	WABG	Greenwood, Mi	960
540	KWRG New Roods, La.	1500	WABH	Deerfield, Va.	1150
1930	KWRO Coquille, Oreg.	690	WABJ	Bangor, Maine	910
1410	KWRT Boonville, Mo.	1370	WABJ	Adrian, Mich.	1490
1050	KWRV McCook, Nebr.	1360	WABL	Amite. La.	1570
1240	KWRW Guthrie, Okla.	1490	WAB0	Waynesboro, Mis	990
1570	KWSC Pullman. Wash.	1250	WABQ	Cleveland, Ohlo	1540
1470	KWSD Mt. Shasta. Calif.	620	WABE	Winter Park. F	1440
1220	KWSH Wewoka-Seminole,		WABT	Tuskegee, Ala.	580
		260	WABV	Abbeville, S.C.	1590
630	KWSL Grand Junction, Colo.	1340	WABY	Albany. N.	1400
1320	KWSO Wasco, Calif.	1050	WABZ	Albemarle,	1010
1450 1010	KWTC Barstow, Calif. KWTO Springfield, Mo	$\begin{array}{r} 1230 \\ 560 \end{array}$	WACA WACB	Camden, S.C.	1590 1380
$\begin{aligned} & 1010 \\ & 1240 \end{aligned}$	KWTX Waco. Tex. Mo	$\begin{array}{r} 560 \\ 1280 \end{array}$	WACB WACE	Kittanning ${ }^{\text {Pa, }}$	1380 730
610	KWUN Concord, Cat.	1480	WACI	The Dalles, Ore.	1300
1340	KWVR Enterprise, Oreg	1340	WACK	Newark, N.Y.	1420
1230	KWVY Waverly. lowa	1470	WACL	Waycross, Ga.	570
730	KWWL Waterloo, lowa	1330	WACO	Waco	1460
1400	KWYK Farmington, N.Mex.	960	WACR	Columbus, Miss.	1050
1490	KWYN Wynne, Ark.	1400	WACT	Tuscaloosa. Ala.	1420
1330	KWYO Sheridan. Wyo.	1410	WACY	Moss Point, Miss.	1460
800	KWYR Winner, S.Dak.	1260	WADA	Shelby, N.C.	1390
1440	KWYZ Everett, Wash.	1230	WADE	Wadeshoro, N.C.	1210
1170	KXA Seattle, Wash.	770	WADK	Newport, R. l .	1540
1400	KXAR Hope, Ark.	1490	WAD	Decatur	1540
1300	KXEL Waterloo, lowa	1540	WADO	New York, N.Y.	1280
1400	KXEN Festus-St. Louis, Mo.	1010	WADP	Kane. P	960
1450	KXEO Mexico, Mo.	1340	WADS	Ansonia, Conn.	0
1280	KXEW Tueson, Ariz.	1600	WAEB	Allentown. Pa.	790
1400	KXEX Fresno, Calif.	1550	WAEL	Mayaguez, P.Rico	0
1490	KXGI Ft. Madison, lowa	1360	WAEW	Crossville, Tenn,	1330
1050	KXGN Giendive, Mont.	1400	WAFC	Staunton, Va.	90
1240	KXGO Fargo, N. Dak.	790	WAFS	Amsterdam, N.Y.	1570
1240	KXIC lowa City, Jowa	800	WAGC	Centre, Ala.	1550
1460	KXIT Dalhart, Tex.	1410	WAGE	Leesburg, Va.	1290
1340	KXIV Phoenix, Ariz.	1400	WAGF	Dothan, Ala.	1320
1360	KXJK Forrest City. Ark.	950	WAGG	Franklín, Tenn.	50
1220	KXKW Lafayetto, La.	1520	WAGL	Lancaster. S. C.	1550
1260	KXL Portland, Oreg.	750	WAGM	Presque isle, Maino	5
940	KXLE Ellensburg, Wash.	1240	WAGN	Menominee, Mich.	1940
1240	KXLF Butte, Mont.	1370	WAGR	Lumberton, N.C.	80
1490	KXLJ Helena, Mont.	1240	WAGS	Bishopville, S.C.	1380
1280	KXLL Missoula, Mont.	1450		Forest City. N.C.	1320
970	KXLO Lewiston, Mont.	1230	WAIK	Galesburg, ill.	1590
	KXLR Little Rock, Ark.	1150		Baton Rouge, La	1460
1370	KXLW Clayton, Mo.	1320	WAIM	Anderson, S.C.	1230
	KXLY Spokane, Wash.	920	WAIN	Columbia, Ky.	1270
920 1240	KXO EI Centro, Calif.	1230	WAIR	Winston-Salem, N.C.	1340
	KXOA Sacramento, Calif.	1470	WAIT	Chicago, 11.	820
620	KXOK St. Louis, Mo.	630 1960	WAJF	Decatur Ala.	1490
995	K $\times 0 L$ Ft. Worth. Tex.	1360	WAJR	Morgantown, W.Va.	1440
950	KX0X Sweetwater, Tex.	1240	WAKE	Atlanta, Ga.	1340
1350	KXRA Alexandria, Minn.	1490	WAKI	McMinnville, Tenn.	1230
1360	KXRJ Russellville, Ark.	1490	WAKN	Aiken. S.C	990
1450	KXRO Aberdeen, Wash.	1320	WAKO	Lawrencevilila, lil.	10
1550	KXRX San lose, Calif.	1500	WAKR	Akron, Ohio	1590
1450	${ }_{\text {KXX }} \times$ B ${ }^{\text {Bozeman Mont, }}$	1450	WAKY	Louis ville, Ky.	790
1590 1450	KXYZ Houston, Tex.	790 1320	WALD	Walterboro, S.C.	1220
1300	KYA San Francisco, Calif	1260	WALG	Altany, Ga.	1590
56	KYAC Kirkland, Wash.	1460	WALK	Patchogue, $N_{\text {P }} \mathrm{Y}$	1370
1560	KYCA Prescott, Ariz.	1490	WALL	Middletown. N .	
1270	KYCN Wheatiand, Wyo.	1340	WALM	Albion. Mich.	1260
1580	KYES Roseburg. Oreg.	950	WALO	Humacao, P.R.	1240
1260	KYJC Medford. Orea.	1230	WALT	Tampa, Fla.	1110
1440	KYME Boise, Idahno	740	WALY	Herkimer, N.Y.	1420
5	KYMN Oregon City, Ore.	1520	WAMD	Aberdeen, Md.	970
1500	KYND Tempe, Ariz.	1580	WAME	Miami. Fla.	1260
1260	KYNG Coos Bay, Ored.	1420	WAMI	Opp. Ala.	860
1540	KYNO Fresno, Calif.	1300	WAML	Laurel, Miss.	1940
620 1230	KYNT Yankton, S. Dak.	1450	WAMM	Flint. Mich.	1420
1230	K YOK Houston. Tex.	1590	WAM0	Homestead, Pa.	866
1280 1260	KYOR Blythe, Calif.	1450	WAMR	Vonice, Fla.	1320
1260	KYOS Merced, Calif.	1480	WAMS	Wilmington. Del.	1380
1320	KYOU Greeley. Colo.	1450	WAMV	East St. Louls. III.	1490
860	KYRO Potosi, Mo.	1280	WAMW	Washington. Ind.	1580
1450	KYSM Mankato. Minn.	1230	WAMY	Amory, Miss.	1580
1570	KYSN Colorado Sprgs.. Colo. KYSS Missoula, Mont.	1460	WANA	Anniston, Ala, Waynesburg. Pa	1490

C.L	Location	K	C.L.	ocation	Ke.	Locatio	Kc.	C.L.	Location	
WANE	Ft. Wayne, Ind.	14	WBCA	Bay Minette, Ala	1150	WBTS Bridg	14		nton.	0
WANN	Annap	1190	WBCB	Levittown	1490	WBUC Buckhannon, W.Va.	146		ntralia, 111.	
WANS	Anderson. S	1280	WBCH	Hasting	1220	WBUD ${ }^{\text {T }}$			restulew, Fla.	1010
WANT	Richmond,	990	WBCI	Williamsburg.	740	WBUGR	1430	W	dlatown.	50
WANV	Waynesboro,	970		Battle Creek, M	930	WBUT Butler, Pa.	1050	WCOA WCOC	Merid	0
WANY	Albany, Ky,	1990 1380	WBCM wBCO	Bay City, Mich. Bucyrus, Ohio	$\begin{aligned} & 1440 \\ & 1540 \end{aligned}$	WBUX Doylestown, P wBuy Lexington. N.	$\begin{aligned} & 1570 \\ & 1440 \end{aligned}$	$\begin{aligned} & \text { WCOC } \\ & \text { WCOF } \end{aligned}$	Meridian, M	1
WAOK	Atlanta, Ga,	1380 1450	WBCO	Bucyrus, Ohio Union S.C	1540 1460	WBUZ Fredonia. N.Y.	1570	wcog		
WAOV	V incennes, Ind.	1450	WBCU WBEC	Un	1460 1420	WBUZ Fredonia. N.Y	$\begin{array}{r} 570 \\ 950 \end{array}$	WC		-
WAPA	River	1570	W	Ha	1570	WBVM Uties, N.Y.	1550		-	20
WAPE	Jacksonville, Fla	690	WBEJ	Elizabethton, Tenn.	1240	WBVP Beaver Falls. Pa.	1230	WCOL	Columbus, Ohio	1230
WAPF	McComb, Miss.	980	WBEL	Beloit, Wis.	1380	WBYE Calera, Ala.	1370	WCON	Cornelia, Ga.	1450
WAPG	Arcadia, Fla.	1480	WBEN	Buffale,	930	WBYG Savannah, G	1450		Boston, Mas Lebanon.	
WAPI	Birmingham. Al	1070 1570	WBER WBET	Moncks Cor Brockton.		WBYS Canton, III. WBZ Boston, Mass.	$\begin{array}{r} 1560 \\ 1030 \end{array}$	$\begin{aligned} & \text { WCOR } \\ & \text { WCOS } \end{aligned}$	Lebanon, \quad Ten Columbla, S.C.	0
WAPL	Appleton, Wis.	1570 1150	WBET WBEU	Brockton. Beaufort	$\begin{array}{r} 1460 \\ 960 \end{array}$	WBZB Selma, N. C	$\begin{aligned} & 1030 \\ & 1510 \end{aligned}$		Lewiston, Mai	0
$\begin{aligned} & \text { WAPO } \\ & \text { WAPX } \end{aligned}$		150			1960	WBZE Wheeling.	1470	w	Montgomery,	1170
WAQE	Towson M.	1570	WBEX	Chilicoth	1490	WRZY Torrington, Conn.	990		Sparta, W is.	1290
WAQI	Ashtabula, Oh	1600	WBFD	Bedford. Pa.	1310	WCAI Fort My	1350		Columbia, Pa.	1580
WAQY	Birmingham, A	1220		硅	1540	WCAL Northfield, Mi	770	WCPA	Clearfleld, Pa.	900
WARA	Attleboro, Mass.	1320	WBGC	hipley,	124	WCAM Camden. N.	1310		Houston, Miss.	-
WARB	Covington,	730	WBGN	Bowling Green, Ky.	1340	WCAO Baltimore, Md	60	WCP	Etow	80
WARD	Johnstown, Pa.	149	WBGR	Jesup. Ga.	1370	WCAP Lowell. Ma			Cincinnati. Ohio	1230
WARE	Ware, Mass.	1250	WBGS	Siditl),	1560 1240	WCAR Detroit, M WCAT Orange.	$\begin{aligned} & 1190 \\ & 1990 \end{aligned}$		Tarboro. N.C.	760
WARF	Jasper, Ala.	1240 550		Fitzoera	$\begin{aligned} & 1240 \\ & 1270 \end{aligned}$	WCAU Pr	$\begin{aligned} & 1390 \\ & 1210 \end{aligned}$		O. N.C.	00
WARK	Blaine, Wa	550		ville.	1450	WCAW Charles	680	WCRA	Effroh	0
WARM	Scranton.	590		Birmingham,	1550	WCAY Cayce, S.C.	620	WCR	Waltham. M	330
Warn	Ft. Pierce. Fia	1330	WBHP	Huntsvilie. Ala.	1230	WCAZ Carthage, ${ }^{\text {III. }}$			Cheraw,	
War0	Canonsburg,	540	WBHT	Brownsville, T	1520	wCBA Corning	1350	WC	Scottsboro,	1050
WART	Moulton, Ala.	030	WBiA	Augusta, Ga.	1230	WCBG Cha	550	WC		
WARU	Peru, Ind.	1600	WB18	Centreville, Ala.	1590 540		$\begin{array}{r} 550 \\ 1290 \end{array}$	WCR	Oneonta, Ala.	990
WASA WASK	Havre de Grace,	$\begin{aligned} & 1330 \\ & 1450 \end{aligned}$			$\begin{array}{r} 540 \\ 1080 \end{array}$	WCBL Benton, ${ }^{\text {W }}$ WY,	$\begin{array}{r} 1290 \\ 680 \end{array}$		Johnstown.	1230
WATA	Boone,	1450	wbig	Greensboro, N.	1470	WCBS Naw Yark. N.	880		Greenwood, S.	
WATC	Gaylord, Mi			Leeshurg. Fla.	1410	WCBT Roanoke Rapids, N.C.	0		Birmin	1260
WATE	Knoxville, ${ }^{\text {T }}$	620	WBiP	Booneville. Mis	1400	WCBY Cheboygan, Mi	1240		Chi	
WATH	Athens, Ohio	0	WBir	K noxville, Tenn	1240	WCCC Hartford. WCCF Punta Gor	$\begin{aligned} & 1290 \\ & 1580 \end{aligned}$		$\begin{aligned} & \text { Chi } \\ & \text { Mat } \end{aligned}$	1240 900
WATI	Indianapolis. Ind	$\begin{aligned} & 810 \\ & 900 \end{aligned}$	WBIS WBI	Bristol, Conn.	$\begin{array}{r} 1440 \\ 1340 \end{array}$	WCCM Lawrence, Mas	8800		Mipley, Mass.	260
ATM	Atmore, Ala.	1590	wbix	Jacksonvi		WCCN Neillsville,	1370		Charlaston, S.C.	
WATN	Watertown, N.Y	1240			1010	WCCO Minneapolis-St. Paul,			ortland, Maine	
WATO	Oak Ridge	1290	12	Eau Clair	1400	Minn				50
WATP	Water	1320	H	Hatties	$\begin{array}{r} 950 \\ 1410 \end{array}$		1260		N.	-
ATR	Water	$\begin{array}{r} 1320 \\ 960 \end{array}$		West Ben	1470	WCDL Carbondal	1440	WCSM	Celina, Ohio	0
WATT	Cadillac	1240	WBLA	Elizabethtown,	1440	WCDS Glas ow.	1440	WCSR	Hillsdale, Mi	
WATV	Birmingham	900	WBLE	Batesville. Miss	1290	WCDT Winchester	1340	WCSS	Amstardam, N.Y.	
WATW	Ashland, Wis.	1400	WBLF	Bellefonte, Pa.	1330	WCEC Rocky Mount, N.C	10			
WAT	Alpena, Mich.	1450	WBLG	Lexington, Ky.	1300	WCED DuBois, Pa.	1420			
WAUB	Auburn.	15	WBLJ	Dalton, Ga.	1230	WCEF Parksbur	650			
WAUC	Wauchul	1310		Evergree	1470	WCEH Hawkins	610 1240			
WAUD	Auburn, Ala.	1230	WBLR	Batesbur	1430	M Cambridge, M			Corbin Ky. Md.	
WAUG	Augusta, Ga.	1050	WBLT	edford.	1350 1480	Mt. Pleasant, Charlotte, Mic	1990	WCT	New	550
WAVA	Arlinoton. Va.	780	W	alem.	1480 1600	Chariot	1000			
$\begin{aligned} & \text { WAVE } \\ & \text { WAVI } \end{aligned}$	Louisville. Dayton, Ohio	970 1210			1400	WCFR Springfield.'	1480		Cuyatioga Fal	
WAVL	Apolto, P	910	WBMC	Meminnville. ${ }^{\text {T }}$	960	WCFV Clifton Forge, Va.	1230		Cum	
WAVN	Stillwater, Minn.	1220	WBMD	Baltimore, Md.	750	WCGA Calhoun, Ga.	0		p	-
WAVO	Avondale Estates,			Belfast.	1230	WCGC Belmont	1270			
WAVP	Avon Park, Fla.	1390	WBM	est	1310	WCGO Ch	1600			
AVU	Albertville, Ala.	630	WBML		1240					
WAVY	Portsmouth, Va.	1350	WBMT	Black Mountain, N.C.		WCHA Chambersb				
WAVZ	New Haven, Con	1300				WCHB				
WAWA	A West Allis, Wis.	15		Virgin Isla	1000		1520		Bristul, Va	
AW	K Kendallvi	1570		nway, N.H.	1050			w	diana, Pa	
WAWZ	Z Zarephath, N.J.	13	WBN	Boonville, Ind	1540	WCHJ Brookhaven, Miss.			diana, Pa.	
AXE	Vero Beach, Fla.	1370	WBNO	Bryan, Ohio	1520					
WAXU	Georgetown, Ky.	158	WBNR	Beaton, N.Y.	1260	WCHL Chapel Hil	1360 970		numbus, Ga.	
WAXX	Chippewa Falls. W		WBNS	Columbus. Oh	1460					
AYB	Waynesboro, Va.	1490 860	WBNT	Oneida, Ten		110		$\begin{aligned} & \text { WD } \\ & \text { WD } \end{aligned}$		0
$A Y$	Dundalk, Md.	860 1500		ew Yor	1380 1360	WCHS Charleston. W. Va.	580	WDA	Dar	
	Rockingham.		W	Salisbur	960	WCHV Charlottesville, Va.	60	WD	Philadelphia. F'a	
R	Oran		WBO	New Oriea		WCIC Cambridge, Minn.	1300	WDA	McRae, Ga.	1410
WAYS	Charlotte, N.C.	610	WBOL	Bolivar, Tenn	1560	WCIL Carbondale.	1020	WDA	Fargo, N. Dak	
WAYX	Waycross,	1230	WBOP	Pensacola, Fla.	980	WCIN Cincinnati, Oh	1480		Escanaba, Miclo.	
WAYZ	Waynesboro. Pa.	1380	WBOS	Broakline. Mass.	1600	WCIT Lima, Ohio	940		Delray Beach. Fla.	
WAZA	Bainbridge, Ga.			Terre Haute,	30	WCJU Columbia,				
WAZE	Clearwator, Fla.	860	WB0	Bogalusa,	20	WCKB Dunn, N.	780	W0BL	Spriagfeld, Tenn.	0
WAZF	Yazoo City, M	1230	WB0Y	Clarksturg, W.Va.	1400	WCK Greer. S.C.	1250			
WAZL	Hazelton, Pa.	1490		Bayamon, P.R.	1600	WCKM Winnsboro, S.C.	1250	W080	,	
WAZS	Summerville, S.C.	780	WBPZ		1230	WCKY Cineinnati, Oh	1470			
WAZY	Lafayette, Ind.	1410	WBRB	Mt. Clemens, Mich	1430	WCLA Claxton, Ga.	1470		${ }^{\text {Fa }}$	
WBAA	West Lafayette. Ind.	920	WBRC	Birmingha	960		1220			
WBAB	Babylon, N.Y.	1440	WBRD	Bradenton, Fla.	1420	WCLC Jamestown. Tenn	1260	WOD	Greenville, Mis	
WBAC	Cleveland, Tenn.	1340	WBRE	Wikes-Barre, Pa.	1340		1570	W0EA	Elisporth, Ma.	
WBAG	Burlington, N.C.	1150	WBRG	Lynchburg. V	1050	WCLE Cleveland. Tenn.	1570	WDEA	Elisworth, Me.	
BAL	Baltinsore, M	1090	W	Indianapolis.	500	WCLG Morgantown, W	1450			
BAM	Montjomery. Ala.	740	WBRJ	Marietta, 0 ,	910	WCLI Corning, N.Y.	1450 1230		amden, Conn.	1370
BAP	Fort Wor	70	WBRK	Pittsfield, M	1340					
			WBRL	Berlin, N.H.	1400	WCLS Columbus, Ga.	1580 1430	W0	Sweqtwater. Tenn. Wilmington Dal.	
BAR	Bartow, F	1460	WBRM	Marion,	250		1430 1320		$\text { n, } D$	
WBAT	Marion, Ind	1400	WBRN	Big Rapids, Mich	1460	WCLU Covington, Ky.	1570	W0	ass	
WBAW	W Barnwell, S.C.	40	WBRO	Waynesboro, Ga.	1310	WCLW Manstleld, Ohio	1230	w	ass	
bax	Wilkes-Barre, Pa.	1240	WBRT	Bardstown. Ky.	1320	WCMA Corinth, Miss.	1230	W0	Doughasvile. Gil	30
BAY	Green Bay, Wis.	+550	WBRV		$\begin{array}{r}900 \\ \hline 510\end{array}$					
baz	Kingston, N.Y.	1550	WBRW	Brewster, N.Y	1510	WCMC Wildwood, N.J.	1230 900		va.	1430
BBA	Pittsfield, III.	1580		wick	1280	WCME Brunswick, Ma	900	w	V	
BBB	Burington, N.C.	920	WBRY	Waterbury, Conn.	1590	I Ashland, Ky.	1340	W	Oothan, Ala.	
BBF	Rochester, N.Y.		WBSA	Boaz, Ala.	1300	MN Arecibo. P.R.	12850		gebura,	
8 BI	Abingdon,	1230	WBSC	Bennetsville, S.C.	1550	WCMP Pine City, Minn.	1350	W	Olive.	260
BBK	Blakely, Ga.	1260		Blatkshear, Ga.	1350	WCMR Eikhart, ${ }^{\text {W }}$ W.				
BBL	Richmond, Va.	1480	WBSG	New Bedford. Mass.	1420	WCMS Norfotk, Va.	1050		(to	
BBM		780		Pensacola, Fla.	1540	WCMY 0ttawa II	$\begin{aligned} & 1410 \\ & 1430 \end{aligned}$		Mar	1490
B80	Forest City. N.C.	$\begin{array}{r}780 \\ 1340 \\ \hline\end{array}$		Charlotte N.C.	1110	WCMY Ottawa, III.	$\begin{aligned} & 1430 \\ & 1580 \end{aligned}$	WDL		1550
WBEQ	Augusta. Ga.	1340 1580	WBTA	Chariotte, N.C.	1490	WCNB Connersviliee	$\begin{aligned} & 1580 \\ & 1240 \end{aligned}$	WDL	M	0
WBBR	Traveters Rest, S.C.	1580	WBTA	Batavia, N.	1490 1540	WCNC Elizabeth City, N.C.	$\begin{array}{r} 1240 \\ 940 \end{array}$	WDLP	Panama City, Fla.	
WBBT	Lyons, Ga.	1340	WBTC	Uhrichsville, 0 .	1540	WCND Shelbyville, Ky	940	WDLP	Panama City, Fla.	80
WBEW	Y Youngstown, Ohio	1240	WBTH	Williamson. W.Va.	1400	WCNF Weldon, N.C.	1400	WDi	Ondianola, Miss	880
WBBX	Portsmouth, N.H.	1380	WBTM	Danville, Va .	1330	WCNH Quincy, Fla.	1230	WOMC	Otsego, Mieh.	880
BBY	Wood River, III.	590	WBTN	Bennington, Vt.	1370	WCNL WCNR Newport, N. H. Bloomsburg. Pa	1010	WDMG	Douplas. Ga. Marquette.	860

MHATIE'E RADIO L(OG

C.L.

DD M Pochbura. Va. WDNC Ourham. N.C. WDNE Elkins, W.Va WDNT Dayton. Tenn. WOOB Canton Miss W00C Prestonsturg. Ky. WDOD Chattanooga. Tenn. WDOE Dunkirk. N.Y. WDOG Marine City, Mieh. WOOK Cleveland, Ohio WOON Athens, Ga. WOOR Sturgeon Bay, wis. WDOS Oneonta. N.Y. WDOT Burlington. Va wDOY Dover. Del WOOW Dowaslae, Mith WDRC Hartford. Conn WDSC Dillon, S.C
WOSG Dyersburg. Tenn. WOSK Cleveland, Miss. WOSL Mocksville, N. WDSP DeFuniak Sprines

WDSR Lake CIty, Fla. WDUN Gainesville, Ga WDUZ Green Bay. Wis. WDVA Danville. Va. WDVH Gainesville, Fla. WDWD Dawson, Ga WDWS Champaign, Ill. WDXB Chattanooga, Tenn.
WDXE Lawrenceburg. Tenn. WOXI Jackson. Tenn. WDXL Lexington, Tenn WOXN Clarksville. Tenn WDXR Paducah, Ky. WDYX Buford, S. wDz Decatur. IH. WEAB Greer. S.C. WEAD College Park, Ga. WEAG Alcoa, Tenn. WEAM Greensboro, N, C. WEAN Providence. R. WEAS Savannah, Ga. WEAT W. Palm Beach, Fla, WEAV Plattsburg, N, Y. WEAW Evanston, ill WEBC Duluth, Minn WEBD Owego. N.Y. WEBR Buffalo. N'Y. WEBR Buffalo. N.
WECL Eau Claire, Wis. WEDO McKeesport, Pa WEEB Southern Pines, N.C. WEEF Highland Park, Ilı. WEEL Fairfax, Va.
WEEN Lafayette. Tenn.
WEEP Pittsburgh, Pa. WEET Warrenton, Va WEEU Reading, Pa. WEEW Washington, N.C.
EEX Easton, Pa.
WEGO Concord. N.C
WEGP Presque islo, Ma
WEHH EImira Heights.
Horseheads.
WEIC Charleston. III. W.
WEIM Fitchburg, Mass
WEIS Center, Ala.
WEKR Fayetteville. Tenn.
WEKY Richmond. KY.
WELZ Monroe. W
WELC Welch.
WELO
Fisher,
W.
Wa,
WELE S. Daytona, Fia
WELI New Haven, Conn.
WELM EImira, $\mathrm{N}_{\mathrm{E}} \mathrm{Y}_{\mathrm{s}}$

182

Kc.

WFLW Monticello, K WFMC Goldsboro, N. WFMC Goldsboro, N.C WF MD Frederick, Md WFMD Frederick, Md

 WFMH Cullman, Ala WFMJ Youngstown, OhiWFMO Fairmont, N.C.
WFMW Madisonvilie. WFMO Fairmont, N.C.
WFMW Madisonville. Ky
WF NC Fayetteville. N.C
WFNL No. Augusta, S.C. WFNL No. Augusta, S.
WFOB Fostoria, Ohio
WFOL Hamilton, Ohio WFOL Hamilton, Ohio WFOM Marietta. Ga.
WFOR Hattiesbure, Miss.
WFOX Milwaukee. Wis. WFOX Milwaukee. Wis.
WFOY St. Augustine. Fla St. Augustine. WFPG Attantic City, N.J.
WFPM Fort Valley, Ga.
WFPR Hammond. La. WFRB Frostburg, Ma. WFRB Frostburg, Md.
WFRC Reidsville, N.C.
1450
1390

1390

930 910

1340
1590
1090
109
130
130
130
97
123
950
970
1230
950
1220
1220
1530
1530 WFTL Ft. Lauderdale, Fla.
940 WFTN Maysville, Ky.
1490 WFTR Front Royal, Va.
660
970
1280
1340
340

1400
1250
980

1310
1490
540
540 WEVA Emporia, Va,
1460

800

1570

1470
1510
1390

390	W		
790	W		8900
:---			
860		960	
:---			
1380	1360		

560

C.L. Locaflon	Ke.	Location	Ke. ${ }^{\text {C }}$	C.L. Location	.	C.L.	Locatlon	
WHLM Bloomsburg, Pa		WINQ Tampa, Fla.	1010	WJMB Brookhaven, Miss.	$\begin{aligned} & 1340 \\ & 1240 \end{aligned}$	WKLV WKLX	ackstone, Ve aris. Ky.	$\begin{aligned} & 440 \\ & 440 \end{aligned}$
whLM Bloomsbura, Pa WHLN Harlan, Ky.	$\begin{array}{r} 550 \\ 1410 \end{array}$	WINQ Binghamton. N.Y.	680	WJMC Rice Lake, Wis. WIMO Cieveland Hots., Ohio	$\begin{aligned} & 1240 \\ & 1490 \end{aligned}$	$\begin{aligned} & \text { WKLX } \\ & \text { WKLY } \end{aligned}$	rwell,	980
WHLO Akron. Ohio	640	WINS New York, N.Y.	1010	WJMO Iroveland Mis.,	630	WKLZ	mazoo,	0
WHLP Centerville, Tenn. I	1570	WINT Winter Haven, ${ }^{\text {W }}$ la.	1560	WJMW Athens, Ala	730 W	WKMC	aring Spras., Pa.	1370 1470
WHLS Port Huron, Mich.	14500	WINX Rockville.	1600 W	W JMX Florenee, S.	970			1360
WHLT Huntington, ind.	1390	WINY Putnam, Conn.	1350	WJNC Jac	1230 W	WKMK	tstown, Fis.	70
HMC Gaithersburg. Md.	1150	WINZ Miami, Fla	$940 . W$	WNO	1230	WKMT	Kings Mtn., N.C.	1220
WHMI Howell, Mich.	1350	WINU Highland. III.		WJOE Port Joe, Fla.	1080	WKNE	N	1290
WHMP Northampton, Mass.	1400	WINW Canton, Ohio	610	Wjoi florence, Ala.	40	WKNR	Ohio	1520
WHN New York, N	1050	Wioi New Bóston, Ohio	1010 W	wJol joliet, III.	W	WKNX	inaw	1210
HNC Henderson, N.C.	890 1250	wiok Normal, IIj.	1440	WJON St. Cloud.	1240 940		inaw	1490
NY MeComb, Miss.	1040	WIoN Ionia, Mich.	1430	WJOR South Ha	1260	WKOA	Hopkjnsville, Kıy	1480
0 A San Juan, P.f	870	WIOS Tawas City, M	1480 1350	WJoy Burlinoton, Vt.	1230	WKOK	Sunbury, Pa.	1070
WHOC Philadelphia. Miss.	1490	W10 Kokomo, ind.	610	WJPA Washington, Pa.	1450	WKOP	Binghamton, N.Y.	1370
WHOD Jackson. Ala.	1290	WIPC Lake Wales, Fia.	1280	WJPD Ishpeming. Mich,	1240	Wkos	Welliston, Ohio	330
WHOF Canton. Ohio	1320	WIPR San Juan, P.R.	940	WJPF Herrin, ill. wis.	1440	Wkow	Madison, Wis.	1070
WHOL Allentown, Pa	600	WIPS Ticonderoga,	250	WJPG Green bay, Wis.	1330	wkox	Framingham, Mass.	1190
WHOM New York. N.Y.	1480		6	WJPS Evansville, ind.	1330	WKOY	Bluefield. W. V a.	1240 +130
WHON Centerville, Ind,		WIRB Enterprise,	630	WJPW Rockford, Mich.	810		Kosciusk	150
WHOO Oriando, Fla.	1230	WIRD Lake Placid, N.Y.	920	WJQS Jackson, Miss.	760	WKKPA	Nalamazoo,	1420
WHOP Hopkinsville. K	1800	WIRE Indianapolis. Ind,	1430	W)R Detroit, Mich.	1510	WKPT	Kingsport. Te	1400
WHOS Decatur, Ala,	1330	WIRJ Humboldt, Tenn.	740	WJRC Joliet, Ill.	1150	WKMV	Sullivan, Ind.	550
WHOU Houlton, Maine	1340	WIRK W. Palm Beach. Fla.	1290	WJRi Lenoir, N.C.	1340	WKRC	Cincinnati,	710
WHOW Clinton, III.	1520	WIRL Peoria, ilit	1230	WJRL Rockiord, ili.	1150		b	1320
WHP Harrisburg. Pa.	1390	WIRV İvine, Ky.	1550	WJRM	1390 970	WKRM	Columbia, Tenn.	1340
WHPE Belton. ${ }^{\text {Wheic. }}$ N.C.	1070	WIRY Platts burg. N.Y.	40	WJRZ Newa	1050	WKRO	Cairo, lil.	4
WHPL Winchester, Va.	610		560 1390	W Jso jonesboro.	1590	WKRS	Waukegan, III.	
WHRT Hartselle, Ala.	860		1910	WJTN Jamestown, N.Y.	1240	WKRT	Cortjand, N.Y.	
HRV Ann Arbor, Mich	1600	WISK Americ	1390	WJTO Bath, Me.			Cit	340
WHRY Elizabethtown	1450	WISL Shamokin, Pa.	1480	WJUD St. Johns, Mith.	1220	WKSB	ilfor	930
HSC Wilming	1490	WISM Madison, Wis.	1480	WJUN Mexito	1580	WKSC	Kershaw,	0
WHSM Hayward.	910	SN Milwaukee, Wis.	1260	WJW Cleveland. Ohio	850	WKSK	W. Jefferson, f.C.	1600
WHSY Hatties burg.	1230	WISP Konte,	1230	WJWL Georgetown, Del.	900		dast	1420
WHTC Holland, Mieh.	1450		680	WJWS South Hill, Va.	1370		Castie fon.	
WHTG Asbury Park.			1240	WJWT Demopolis. Ala.	0			1310
	1400	Wisv Virouqua	1360	WIXN Jackson, Miss.	4450		Thoma	730
WHUB Cookeville, WHUC Hudson,	$\begin{aligned} & 1400 \\ & 1230 \end{aligned}$	Wisz Glen Burnie. Md.	590	WJZM Clarksville.	1080	WKTJ	Farmington, Maine	0
	1240	WITA San Juan, P.R.	1140	WKAC	1510	WKTQ	South Paris, Malne	
WHUN Huntington, Pa	1150	WITH Baltimo	1010	WKAJ Saratoga Springs,			Sheboyga	
WHUT Anderson, Ind.	1470	WITN Washingto	,	N.Y.			Atrantie Eqact,	580
WHVL Hendersonville. N.	1600	Wity danville, lil.	980	WKAL Rome, N.Y.	1460		Culm	340
HVR Hanor	950	WITZ Jasper, Ind.	90	N	1320	WKVA	Lewistown.	
WHWB Rutland. Vt.	1000	WIVE Ashland, Va	1970	WKAP Allento	1320	WKV	Virginia Beath.	550
WHWH Princeton, N.J.	350	WIVI Christiansted, V.t.	析	WKAQ San Ju	580	WKVM	San Juan, P.R.	
WHYE Roanoke, Va.	910	WIVK Knoxvi	1370	WKAR East Lansing, Mich.	870		Brattieboro, VI.	0
WHYL Carlisle, Pa.	960	WIVy Jieques	1050	WKAT Miami Beach, Fla.	1360		Key West. Fla,	1400
WHYN Springfield, Ma	740	WIXK New Richmond, Wis.	1590	WKAY Glasgow. KY	4950	W	Rocky	290
WIAC San Jian,	900	WIXN Dixon, 111.		WKAZ Charieston, W.Va,	1550			
WIAM Madison. W	1310	WIXX Oakland Park, Fla.	1520	WKBA Vin	810		Knoxvi	
WIBA Madison. WIBB Macon.	1280	WIYN Rome. Ga.	1360	WKBC N. Wrikesboro, N.C.	1410	WKX	Sarasota,	
WIBC Indianapolis,	1070	WIZE Springfield. Ohio	1340	WKBJ Milan.	1600	WK	klahoma City, Okla.	. 930
WIBG Philadelphia,	990	WIzS Henders	1250	WKBK Kan.	1220	WK	Bristol. Tenn.	
WIBM Jackson, Mich	1450	WIzz Streator	1440	WKBL Covington, T	1250	WK	Greenville, KV.	0
WIBR Baton Roupe	1240	WJAB	850	WKBN Youngstown, Ohio	570	WKYN	Rio Pledras, P.R.	0
WIBU Poynette. Wis,	1240	WJAG Nor	780	WK80 Harrisburg.	1230		rser	
WIBV Belleville, Ill.	1260	WJAK Jackson.	1460	WKBR Manchester, N.H	1250	W		
WIBW Topeka, Mans.	950	WJAM Marion. Ala	1310	WKBV Richmon	1490 1520	WKY	Paducah	0
WIBX Utica, N.Y. WICC Bridgeport.	6	WJAN Ishpeming, Mich.	970		1500	WKZ	Casey, III.	00
WICE Providence. R.I.	1290	WJAR Providente, R.I.	920		850	WKZ0	Kalamazoo. Mieh.	
WICH Norwich, Eonn.	1310	WJAS Pittsburgh, Pa.	1320	WKCT Bowling Ǵre	0	WLAC	Nashville, Tenn.	
WICK Scranton, Pa.	1400	WJAT Swainsboro. Ga.	0	CW Warrenton	1420	WLAD	Danbury, Conn.	
wico Salisbury, Md.	1320	WJAX Jacksonvilie, Fia.	1880	WKDA Nashville. Tenn.	1240	WLAF	LaFollette, Tenn	-
wicU Erie, Pa.	1330	WJAY Mulin	960	WKDE Altavista, Va.	1280			
WICY Malone, N.Y	1490	WJAB Albanyida.	1230	WKDK Newberry. S.C.	1240	WL	akela	1470
WIDE Biddeford, Maine	1400	WIBC Bloomington, lit.	1230	WKDL Clarksdale. Mis	1600		peas	390
WIDD Elizabethton, Tenn.	1520	WJBD Salem, III.	1350	WKDN Camden, N.J.	1250		xingto	
WIDU Fayetteville, N.C.	1400	WJBK Detroit, Mieh.	1500	WKDX	800	WLAQ	Rome,	1410
WIEL Elizabethown,	1310	WJBL Halland. Mich.	1260	WKE Huntington, W. Va,	1450	W LA	Athens	1450
WIFM EIkin N.C.	1540	WJBM Jerseyvilie. lif.	1480	WKE Kewa	1600	wLAS	Jaqksonvilie, N.C.	910
WIGL Superior, Wis.	970	WJBO Baton Rauge,	1150	WKER Pompton Lakes, N.J.	1500	WLAT	copway, s.c.	1330
WigM Medford, Wis.	1490	WJBS DeLand, Fia,	1390	WKEU Grifin, Ga.	1450	WLA	Laure	
WIGS Gouverneur. N.Y.	1230	WJCD Seymour, ind.	960	WKEY Covington, Va.	1340	W	Grand rapids, mieh.	0
WIII Homestead, Fla.	430	WJCM Sebring, Mia.	1510	WKFD Wickford, R.I.	1370		Ga.	450
WIIN Atlanta, Ga,	9740	WJCw Johnson Clty, Tenn.	910	WKFE Yauco, P.R.	1550	WL	Gainesvili	580
WIKC Bogalusa, La.	1490	WJDA Quincy, Mass.	1300	WKFR Battie Creek, mien.	1340	WLBE	carrollton, Ga.	100
WIKI Chester. Va.	1410	WJDB Thomasville. Ala.	630	WKGN Jackson. ${ }^{\text {WKic }}$	970	WLBC	Muneie, Ind.	40
WIKY Evansville, Ind	820	WIDX Jackson, Miss.	1470	WKIC Hazard, Ky.	1390	WLBE	Leesbura, Fla.	
WIL St. Louis, Mo.	1490	Wjor Salisbury, Md.	12	w Kio Urbana, III.	1580	WLBG	Laurens, S.C.*	
WILA Danville. Va.	1580	WJEF Grand Rapids, mi	${ }_{990}$	WKIG Glenvilie, Gia.	1580	WLB	Mattoon.	1220
WILD Boston, Mas	1090	WJEJ Hagerstown, Md.	1240	WKIK Leonardtown, Md.	1370	WL	Bowling Green, Ky.	1410
WILE Cambridge, On	1270	WJEM Valdosta. 'Ga,	1150	WKIN Kingsport. Tenn.	1450	WLB	Dekalb, III.	360
WILK Wilkes-Barre, Pa.	980	WJER Dover, Ohio	1450	WKIS Orlando, Fla.	740	WLBL	Auburndale, Wis.	930
WILL Urbana, III.	500	WJES Johnston, S.C.	1570	Wicix Raleigh. N.C.	850	WLBN	Lebanon, K, V.	1590
WILM Wilminoton, Dei.	1450	WJET Erie. Pa,	1480	WK1z Key West, Fla.	1500	WLBR	Centerville, Miss.	1580
WILO Frankfort. Ind.	1570 1320	WJHO Operika. Ala.	1400	WKJE Mayaquez, PiR.	710 1380		Banpor, Maino	620
WILS Lansing, mich. Peach.	.	WJIG Tullahoma, Tenn.	740	WKJG Fort Wayne,	1580	WLC	mpulton, Al	1530
WILZ St. Potersbur Florida	a 1590	WJiL jacksonville. 116.	550		1520	WL	Sottsville, ky.	1250
WIMA Lima, Ohio	1150	WJIM Lansing. Mich.	240	WKKD Aurora	1580	WLCM	-	
Wimo Winder. Ga	1300	WJJC Commerce. Ga.	1160	WKKO Cocoa.	860	,	quransbura, N.	
WIMS Michigan City, Ind.	1420	WJJO Chicago.	1260	WKKS Vanceburg. Ky.	1570	WLCO	Eustis, Fla.	910
WINA Charlottesville, Va.	1400	WJJL Niagara Falls. N,Y.	1440	WKLA Ludington. Mich.	1450 1300	W	LaCrosse, W	1490
WINC Winchester,	1400	WJJM Lewisburg. Tenn.	1490	WKLC St. Albans. W.Va.	1370	WLCY	St. Petersburg, Fla.	1380
WINE Chicasolid. Conn.	940	WJJZ Mount Holly, N.J.	1460	We Washington.	980	WLDE	8 Atiantic City, N.J.	1490
WINF Manchester, Conn.	1230	WJLB Detroit, Mich.	1400	WKLK Cloquet, Minn.	1230	WLDS	S Jacksonville, lil.	
WING Dayton, Ohio	1410	WJLD Homewood, Ala.	$\begin{aligned} & 1480 \\ & 1480 \end{aligned}$	WKLM Wilmington. N.C.	980	WLDY	Y Lpdysmith, Wis.	
WINI Murphyslooro, 111.	20	W JLE Seckley, W.V	560	WKLO Louisvilie. Ky.	108	WLEA	A Sornelf, N.Y.	1450
WINK Fort Myers, Fla. WINN Louisville, Ky.	1240	WJMA Orange, Va.	1340	I WKLP Keyser, W. Va	1390		Sandusky, Oh	

NN Louisville, Ky.

U. S. FM Stations by Call Letters

Abbreviation: (s)-broadcasts stereo
C.L. Location
KABC.FM Los Angeles, Callf.

KACA Prosser, Wash.
KACEFFM RIverside. Calif.
KAFE St. Louis, Mo.
KAFE San Franeiseo, Cal.
KAF Auburn, Calif.
KAFM-FM Honolulu, Hawali (s
KAIM-FM Honolulu, Hawali(s)
KAJS Newport Beath, Calif.
KAJS Newport Beath
KAKC Tulsa, OKla.
KAKI San Antonio
KALB.FM Antonio, Tex.
KALH Denver, Colo.
KALW Senver, Colo. F .
KAMS Mammoth Spring. Ark.
KANG Angwin. Cal.
KANT. FM Lantastor, calit.
KANU Lawrence. Kans. (8)
KANW Albuquerque, N. Mex.
KAOL-FM Carroliton, Mo.
KAPP Redondo Beach, Callf.
KARA-FM Albuquerque, N. M
KARK Littie Rock, Ark.
KARM-FM Frosno, Calif.
KASK.FM Ontario, Calif.
KASU Jonesbore, Ark.
KATY-FM San Luis Obispo, Callf.
KAVR-FM Applevalley, Cai.
KAYD Beaumont, Tex. KAZZ Austin, Tex
KBBI Los Angeles, Callf.
KBBL Riverside, Cal.
KBBW San Diego, Cal. (s
KBCA Los Angeles, Calif.
KBCL-FM Shreveport. La. (s)
KBEE-FM Modesto, Cali
KBEY Kansas City, Mo.
KBFI Boise, Idaho
KBFM Lubbock, Tex.
KBGL Pocatello, Ida.
KBHF Bozeman, Mont.
KBHS.FM Hot Springs. Ark. KBIG-FM Los Angeles.Avalon. KBIM.
KBIM-FM Roswell, N. Mex.
KBLE-FM Seattle, Wash
KBMC Eupene, Ore.
KBMF-FM Spearma
KBMF-FM Spearman. Tex.
KBMS Los Angeles, Calif.
KBNO Houston Aeles, Calif.
KBNO Houston, Tex. (s)
KBOC Ogden, Utah (s)
KBOE-FM Oskaloosa, lowa
KBOX-FM Boise, Ida. (s)
KBOX-FM Dallas. Tex.
KBPI Denver, Colo.
BRG San Francisco. Cal. KBTM.FM Bremerton. Wash KBUZ-FM Monesboro, Ark KBYR.FM Anchorade.
KBYR.FM Anchorage. Alaska (s) KCAL-FM Redlands, Calif.

C.L. Location
 KCBH Beverly Hills, Calif. (s)

 KCBS.FM San Francisco, Calif. KCEE-FM Tucson, Ariz. KCFC Kansas City, Kan.KCFM St. Louis, Mo.(s) KCFM St. Louis, Mo. (S)
KCHQ-FM Conchella, Calif. KCIB-FM Fresno, Calif. (s) KCIC Clinton, Mo.
KCIL-FM Houma, La.
KCKN-FM Kansas City, Kan. KCKN-FM Kansas Ci
KCLB Carlsbad, Cal. KCLE-FM Cleburne, Tex. KCLO.FM Leavenworth, Kans. KCLU-FM Rolla, Mo.
KCMA San Francisco, Cal.
KCMB.FM Wichita, Kans.
KCM Los Angeles, Calif.
KCM K Kansas City, Mo.
KCMO.FM Kansas City, Mo.(s)
KCMS-FM Manitou Springs, Colo. KCOM Omaha, Nebr.
KCPS Tacoma, Wash.
KCPX-FM Salt Lake City, Utah
KCPX-FM Salt Lake City, Utah
KCRAW FM Sacramento, Calif.
KCRW Santa Monica, Calif.
KCSB-FM Santa Barbara. Cal.
KCSM San Mateo, Calif.
WCTSFM Minneapolis, Minn.
KCUE.FM Red Wing, Minn
KCUE-FM Rella, Ia. Wing, Minn.
KCUL-FM Ft.
KCUL-FM Ft. Worth, Tex. (s)
KCUR-FM Kansas City, Mo KCVR-FM Kansas Clity, KCWS-FM Ellensburg,
WDAF-FM Kansas. Mo Wash.
WDAF-FM Kansas, Mo.
KDDD-FM Dumas, Tex. Callf.
KDEF-FM Albuquerque, N. Mex.
KDES.FM Palm Sops.: Calif. (s)
KDFC San Francisco, Calif.
KDFR Tulare, Cal.
KDHI-FM Twenty-Nine Palms,
KDKA-FM Pittsburgh, Pa. KDLA-FM De Ridder, La. KDMC Corpus Christl, Tex.
KDMI Des Moines. lowa(s) KDMI Des Moines. lowa(s
KDNT.FM Denton, Tex KDNT-FM Denton, Tex
KDOK-FM Tyler, Tex. KDPS Des Moines, lowa KDUO Riverside, Callf. (s) KDUX-FM Aberdeen. Wash. (s) KDVR Sioux City, la. (s) KEAR San Franciseo, Calif. KEAX National City, Calif. KEBJ Phoenix, Ariz. KEBR Sacramento, Calif. KEBS San Diego, Calif. KECL Albuquerque. N.M. KECR EI Cajon, Calif. KEDC-FM Northridge, Cal.
KEED-FM Springfield-Eugene,

c.l.

KEEN-FM San Jose. Calif.
KEEZ San Antonio, Tex. (s)
KEFC Waco, Tex. (s)
KEFM Santa Posa, Cal.
KEFW Honolulu, Hawai
KELD-FM EI Dorado, Ark, (s)
KELE Phoenix, Ariz.
KELT Harlingen, Tex.
KEMO St. Louis, Mo.
KERI Bellinghang, Wash.
KERN.FM Bakersfield. Callf.
KERS Sacramento, CaI.
KESM-FM EI Dorado Springs,
KETO-FM Seattle, Wash.(3)
KEWC.FM Cheney, Wash.
KEZE Anaheim, Calif.
KFAB. FM Omaha, Nebr.
KFAC-FM Los Angeles. Calif.
KFAM-FM St. Cloud, Minn.
KFAY-FM Fayettevilie, Ark.
KFBD Waynesville, Mo.
KFBK.FM Sacramento, Calif.
KFCA Phoenix, Ariz.
KFGQ.FM Boone, lowa
KFH-FM Wichita, Kans.
KFJC Los Altos, Cal.
KFJZ Fort Worth, Tex.
KFLA-FM Scott City, Kan. KFMB-FM San Diego, Calif. KFMC Portland, Oreg.
KFMG Des Moines. la.
KFMK Houston, Tex.(s)
KFML-FM Denver. Colo.
KFMM Tucson. Ariz.
KFMN Abilene, Tex.
KFMP Port Arthur, Tex. (s)
KFMQ Lincoln, Nebr.
KFMR Fremont, Cal.
KFMV Minneapolis, Minn ${ }^{\text {K }}$
KFMV Minneapolis, Minn
KFMX San Diego. Calif. (s)
KFNB Eugene, Oreg. (s)
KFNE Bia Springs Texla. (s)
KFNE Big Springs, Tex.
KFOG San Franeisco, Calif. (s)
KFOX-FM Lond Beach, Calif.
KFRC-FM San Francisco. Calif.
KFRE-FM Fresno. Calif. KFRE-FM Fresno. Calif.
KFUO.FM Clayton, Mo.
KGAF-FM Gainesville, Tex. KGB-FM San Diego, Calif. (s) KGBC.FM Galveston. Tex. KGBI.FM Omaha, Ne KGBN.FM Caldwell, Idaho
KGEE-FM Bakersfield. Cal. (s) KGFM Edmonds, Wash. KGGK Garden Grove, Calif. (s) KGLA Los Angeles, Calif. KGME-FM Centralia, Wash. KGME-FM Centralia, Wash.
KGMG Portland, Oreg. (s)

C.L. Location

KGMI-FM Bellingham, Wash.
KGNC-FM Amarillo, Tex KGO-FM San Francisco, Calif. KGPO Grants Pass, oreo. KGUD-FM Santa Barbara, Calif. KGVW-FM Belgrade, Mont. KHAK-FM Cedar Rapids, Iowa(s) KHBL Plainview, Tex.
KHCB.FM Houston, Tex.
KHCB.FM Houston, Tex.
KHEP.FM Phoenix, Ariz.
KHFI-FM Austin. Tex.
KHFM Albuquerque, N. Mex. (s)
KHFR.FM Monterey. Calif. (s)
KHGM Beaumont, Tex. (s)
KHIQ, Sacramento, Calit. (s)
KHJ. FM Los Angeles, Calif.
KHMS EI Paso, Tex.
KHOF Los Angeles, Calif.
KHOK-FM Hoquiam, Wash.
KHOL-FM Kearney. Holdrege,
KHOM-FM Turlock, Calif. (s)
KHOZ.FM Harrison, Ark.
KHPC Brownwood, Tex.
KHQ.FM Spokane, Wash.
KHSC Arcata, Calif.
KHSJ-FM Hemet, Cal.
KHVH-FM Honolulu. Hawaii
KHVR Bilou, Calif.
KHYI Fremont, Calif.
KICS.FM Hastings, Neb.
KICN Omaha, Nebr.
KID-FM Idaho Falls. Ida
KIEM Eureka, Calif.
KIFM Bakersfield, Cal.
KiFM Bakersfield, Cal.
KIHI Tulsa, Okla.
KIMN.FM Denver, Colo.
KIMP-FM Mt. Pleasant, Tex.
KING.FM Seattle, Wash.
K100 Oklahoma, Okla.
KIRO-FM Seattie, Wash.
KISA Kansas City, Mo.
KISS San Antonio, Tex.
KISW Seattle, Wash. (s)
KITH Phoenix. Ariz.
KiTY San Diego, Calif.
KITY San Antonio, Tex. (s)
KIXI-FM Seattle, Wash.
KIXL-FM Dallas, Tex.(s)
KJAZ Alameda, Calif.
KJEK-FM Junction City, Kan.
KJEM-FM OkIa. City, Ok
KJIM Ft. Worth, Tex.
KJLM San Diego, Calif.
KJML Sacramento, Calif.
KJOY-FM Burlington, Vt.
KJRG.FM Calif.
KJSB Houston. Tex. Kans. (s)
KJSK.FM Columbus,
KKFM Colorado Sprine.

C.L.

KKHI-FM San Francisco, Cal. KLAC.FM Los Anpetes, Calit KLAW Lawton, Okla. (s) LAY.FM Tacoma, Wash. (s) KLBS.FM Los Banos, cal. KLCN-FM Blythevilie, Ark. KLEF Houston, Tex. (s) KLEN-FM Killeen, Tex. KLGS Los Gatos Cal. KLFM Beverly Hills, Callif. KLIR-FM Denver, Colo. (s) KLIZ-FM Brainerd. Minn. LJT Lake Jackson, rex. KLM O-FM Lonomont, Colois. KLOA.FM Ridgecrest, Galit. KLON Long Beach, Calif. KLRO San Diego, Calif. (s) KLSN Seattle, wast. (s) KLST Colorado Springs, Colo.(s) KLUB-FM Salt Lake City, Utah KLUE.FM Longriew, Tex.
KLUR Wichita Falls, Tex.
KLVL Pasadena, Tex.
KLWN-FM Lawrence, Kan.
KLXN Seatite, Wash.
KLYO.FM Bakersfeld, Callip.
KLYN-FM Lynden, Wash. KLYX Memphis, Tenn.
KLZ.FM Denver, Colo.
KMAG Ft. Smith, Ark.
KMAK-FM F resnn, Callf.
KMAP Dallas. Tex.
KMAX Sierra madre, Callf.
KMBC-FM Kansas City, Mo.(s)
KMCP Portland, Oreq.
KMCS Seattle, Wash.
KMEO Phoenix, Ariz, (s)
KMER Fresno, Calif.
KMET Denver, Colo.
KM FM San antonio, Tex.
KMHT Marshall, Tixx.
KMJ.FM Fresno, Calif.
KMLB-FM Monroe, La. (s)
KMMK Little Rock, Ark.
KMOD-FM Midland. Tex.
KMOX-FM St, Louis, Moo
KMPX San Francisco Calif.
KMSC Clear Lake City, Tex.
KMSM Rolla, Mo.
KMSU Mankato, Minn.
KMUW Wichita, Kans.
KMYC-FM Marysville, Callf:
KMUZ Santa Barbara, Cali

KNCO-FM Garden City, Kans.
KNDX Yakima, Wash
KNEB-FM Scottsbluff, Nebr. KNED.FM McAtester, Okla. KNER Dallas, Tex.
KNEW.FM Scottsbluff, Nebr. KNFB Nowata, Okla.
KNFM Midland Tex
KNIK-FM Anchorage, Alaska KNIX-FM Phoenix, Ariz. (s) KNJO Thousand olaks, Calif. KNOB Long Beach, Calif. (S)
KNOC.FM Natchitochos, La. KNOF St. Paul, Minn. KNRK.FM F. Worth, Tex KNTO Wichita Fails, Tex. (s) KNTO Wichita Falis, Tex. (s)
KNWS-FM Waterloo, lowa KNX.FM Los Angeles, Callf. KNXR Rochester, Minn.
KOA-FM Denver, Colo.
KOAT.FM Albuquerque, N.M.
KOAT-FM Ahbuquerque, N.M.
KOCI. FM Denver, Colo
KOCV Odessa. Tex.
KOCW Tulsa, Okta. (s) KOCY-FM Oklahoma City, OkIa, KODA.FM Houston, Tex.(s) KOFM Oklahoma City, Okla KOFO. FM Ottawa, Kan. KOGM-FM Tulsa. Okla KOGO San Diego. Calif. KOIN-FM Portland, Oreg. KOKH Oklahoma City, Okla. KOL.FM Seattle, Wash. KONG-FM Visalia, Calif. (s) KOOL.FM Phoenix. Ariz. KOPR-FM Great Falls, Mont. KORK Las Vegas. Nev. (s) KOSE-FM Osceola, Ark. KOST Dallas, Tex.
KOSU-FM Stillwater, Okla. (s) KOTN.FM Pine Bluff, Ark. KOZE-FM Lewiston, Idaho KPAC-FM Port Arthur, Tex. KPAN-FM Hereford, rex. KPAT-FM Berkeley, Calif. KPCS Pasadena, Calif.
KPDQ.FM Portland, Ore. KPEN San Franciseo, Cal. (s) KPET.FM Lamesa. Tex. KPFA Berkcley, Calif KPFB Berkeley. Dalif.
KPFK Los Angeles, Calif. KPLC-FM Lake Rharles, La.
KPLX San Jose, Cal.
C.L. Location

KPFM Portiand, Oreg. (s) KPGM Los Alios, Calif. KPLR•FM St. Loui
KPOI.FM Honolulu, Hawa
il (s) KPOL.FM Los Angeles, Calif.(\$) KPPC.FM Pasadena, Calif. KPPS-FM Parsons, Kans. KPRI San Diego, Calif. (s) KPRN Seallo, w ah. KPRS. FM Kansas City, Mo.
KPSD KPSD Dallas, Tex. KQAL.FM Omaha, Nebr. (s) KQBY.FM San Francisco, Callf. KQFM Portland, Ores.
KQIP Odessa, Tex.
KQRS.FM Golden Valley, Minn. KQTY Wichita, Kan. KQUE Houston, Tex, (3) KQV-F M Pittsburgh, KRAB Seattle. Wash KRAK-FM Stockton, Calif. KRAM-FM Las Vagas, Nev. KRAV Tulsa. Okia. (s) KRBE Houston. Tox. (s) KRCC Colorado Springs, Colo. KREM FM Spokans wash. KREM-FM Spokane, W KREP Santa Ciara, Cal.
KREX-FM Grand Juncti KREX-FM Grand Junction, Colo. KRFM Phoenix, Ariz. (s)
KRHM Los Angeles, Callf. (s) KRIL EJ Dorado, Ark. (s) KRIL El Dorado, Ar
KRIT Clarion, lowa
KRKD.FM Los Angeles. Callf. KRKD.FM Los Angeles. Ca
KRKH.FM Lubbock, Tex. KRKY Denver, Colo.
KRLD.FM Salas. KRMG•FM Tulsa, Okla. KRMG-FM Tuisa, Okla. KRMS-FM Osage Beach, Mo. KRMS-FM Osage Beach, mo.
KRNL-FM Mt. Vernon, la. KRNW Boulder, Colo. KRNY.FM Kearney-Holdrese. Nebraska
KROC.FM Rochester, MInn. KRON-FM San Francisco
KROW Santa Barbara, Call KROW Santa Barbara, Calif. KRPM San Jose, Callf. KRRC San Jose, Calif. KRSA.FM Salinas, Cal. KRSI Minneapolis, Minn. (s) KRSI-FM St. Louis Park, Minn. KRSN-FM Los Alamos, N. Mex. KRVM Eugene. Orea.
KRVN.FM Lexington, Nebr. KRW G University Park, N. M. (s) KRVS-FM Lafayette. La. KSBW.FM Salinas, Calif KSDA La Sierra, Calif. KSDB-FM Manhattan, Kans. KSDO-FM San Diego. Cal KSDS San Diego, Calif. KSEA San Diego, Calif. KSEO-FM Durant, Okla KSFM Dallas, Tex.(s) KSFR San Francisco. Calif. (s) KSFV San Fernando, Callf.
KSFX San Francisco, Calif. KSFX San Francisco, Calif. KSGV West Covina, Cal.
KSHE Crestwood, Mo.(s) KSHS Colorado Springs, Colo. KSIS.FM Sedalia, Mo. (s) KSjo.FM San Jose, Galif. (s) KSJS San Jose, Calif.
KSJT San Andelo, Tex.
KSL_F
Salt Lake City, Utah(s) KSL-F M Salt Lake city, Utah(s) KSLA Seattio, Wash. (\$)
KSLH St. Louis, Mo. KSLH St. Louis, Mo. KSLO.FM Opelousas. La. KSLT Tyler, Tex.
KSMA.FM Santa Maria, Calif. KSO.FM Des Moines. Iowa KSOM Tucson, Ariz.
KSOP-FM Salt Lake City, Utah KSPC Claremont, Calif.
KSPI.FM Stillwater, Okla. KSPI-FM Stilwater, Okla. KSRF-F Santa Monica, Callf. KSRF Santa Monica, C
KSTE Emporia. Kans. KSTL-FM St. Louis, Mo. KSUN-FM SUL lowa City, lowa KSUI lowa City, lowa
KSYN Joplin, Mo.(s) KSYN Jopin, mo. (s) Wash. KTAL Texarkana. Tex. KTAL Texarkana. KTAR-FM Phoenix, Ariz. KYBC-FM Austin, Tex.(s) KTCF Cedar Falls, lowa KTCS-FM Ft. Smith, Ark. KTCU-FM Ft. Worth, Tex KTEA.FM Midwest City, Okia, KTEC Oretech, Oreg. KTFC Sioux City, la. KTGM Denver, Colo.
C.L.

Lecation KTim San Rafael, Calif. KTIS.FM Minneapolis, Minn. KTjO-FM Ottawa, Kans. KTNT-FM Tacoma Wash KTOD-FM Sinton, Tex, (s) KTOP Topeka. Kan. KTOP Topeka. Kan.
KTOY Tacoma, Wash. KTQM-FM Clovis. N. M. KTRB-FM Modesto, Calif. KTRB.FM M Houston. Tex. KTRH-FM Houston, Tex. KTSM-FM El Paso, Tex KTTS-FM Springfield, Mo. KTW.FM Seattle, Wash. KTW-FM Seattle, Wash KTXN.FM Victoria, T KIXN-FM Victoria, KTXR.FM Springfield, Mo.(s) KTXT.FM Lubbock. Tex. KTYM-FM Inglewood, Callf. KUAC College, Alaska KUID Moscow, Ida. KUDE-FM Oceanside, Calif. KUDU.FM

Ventura.0xnard, Calif. (s) KUER Salt Lake City, Utah KUFM Missoula, Mont. KUFY Redwood City, Callf KUGN=FM EUGE Houston. Tex.
KUMF H F M Duluth, Minn. KUOA.FM Siliam Springs, Ark. KUOH Honolulu, Hawaii KUOP Stockton, Cal. (\$) KUOW Seattie, Wash. KUPD.FM Tempe, Ariz. KURL.FM Billings, Mont. KUSC Los Angeles, Calif. KUSU-FM Logan. Utah KUT.FM Austin, Tex. KVCR San Bernardino, Callf. KVEC.FM

San Luis Obispo, Calif. (s) KVEG-FM Las Vegas, Nev. KVEN-FM Ventura, Calif. VIl.FM Amarillo, Tex KVIL-FM Highland Park.Dallas. Tox,
KVOA.FM Tueson, Ariz.
KVOF FM EI Paso, Tex. KVOK Honolulu, Hawait KVOP.FM Plainview, Tex. KVOR-FM Colorado Springs, Colo. KVSC Logan, Utah
KVWM Show Low, Ariz. KVXN Los Angeles, Cal. KWAR Waverly, Jowa KWAX Eugene, Oreg. KWBE.FM Beatrice, Neb. KWDM Des Moines. La. (s)
KWFM Minnaapolis, Minn. (s) KWG-FM Stockton, Calif. KWGN.FM Abernathy. Tex. KWGS Tulsa. Okta.
KWHG Lincoln. Neb.
KWHI.FM Brenham, Tex.
KWHO-FM Salt Lake City, Utah KWHO-FM Salt Lake
KWHP Edmond, Okla. KWHP Edmond, Okla.
KWIX St. Louis. Mo. Callf. KWIZ-FM Santa Ana, Ca
KWJB-FM Globe, Arjz. KWJB-FM Globe, Ariz-
KWKC-FM Abilene, Tex. KWKC.FM Abilene, Tex. (s) KWKC-FM Abilene,
KWKH-FM Shreveport, La. KWLM-FM Willmar, Minn KWLW San Angelo. Tex.
KWMF FM Walnut Creek, Cal. KWMF-FM Walnut
KWMO Odessa. Tex.
KWOA.FM Worthington, Minn KWOC-FM Poplar Bluff, Mo. KWPC-FM Muscatine, lowa KWPM-FM West Plains, Mo. KWWC.FM Columbia, Mr, KXEL-FM W aterioo, Cawa KXJK.FM Forrest City, Ark KXKX San Francisco. Calif $K \times L U$ Los Angeles, Cali KXI.Y-F M Spokane, Wash. KXOA Sacramento, Calif. KXOL.FM Ft. Worth. Tex. (s) KXQR Fresno. Calif. (s) KXRQ Sacramento, Calif KXTR Kansas City. Mo. (s) KXYZ Houston, Tex. (s) KYA.FM San Francisco, Callf. KYEW Phoenix, Ariz. KYFM Oklahoma City. Okla. KYLE-FM Temple. Tex. KYMS Santa Ana, Cal KYSM-FM Mankato, Minn. KYW-FM Cleveland, Ohio KZAM Seattle. Wash. (s) KZFM Cortez, Colo.
KZIX.FM Ft. Collins. Colo. KZOM OkJahoma City, Okla. KzSU Stanford, Cal.
KZUN-FM Opportunity, Wash

C.L.

Location

WAAB-FM Worcester, Mass. WAAM-FM Parkersburg, W.Va WAAZ-FM Crostviow, Fia. WABA-FM Aguadilla, P.R. WABE Atlanta, Ga. WABI.FM Bangor, Maine WABQ Cleveland, Ohio WABX-FM Dotroit, Mich. (s) WABZ-FM Albemarle, N.C. WACO Waco, Tex
WACY-FM Moss Point. Miss. WAEB-FM Cincinnati, Ohio WAEF.FM Cincinnati, 0 . WAER Syracuse, N.Y WAEZ Miami Beach, Fla. (s) WAMR Huntsville. Ala. WAIC San Juan, P.R. WAIR.FM Winston.Salem, N.C. WAIV indianapolis, Ind. WAJM Montgomery, Ala. (s) W AJP Joliet, 111. WAJR-FM Morgantown, W.Va. WAKR-FM Akron, Ohio WAKW-FM Cincinnati, Ohio WALK.FM Patchogue, N.Y. WALL.FM Middletown, N. Y. WAMC Albany, N,Y.
WAMF Amherst, Mass.
WAMO.FM Plttsburgh, Pa.
WAMU.FM Washington, D.C. WANG Goldwater, Mich. WAPC.FM Riverhead, N.Y.(s) WAPI.FM Birmingham, Ala. WAPS Akron, Ohio WAQE-FM Towson, Md.(s) WARC Meadville, Pa.
WARD.FM Johnstown, Pa. WARK Little Rock, Ark, (s)
WARN.FM Fort Pierce, Fla. WARU-FM Peru, Ind. WASA.FM Havre De Grace, Md. WASH Washington, D.C.(s) WASK-FM Lafayette, Ind. WATH.FM Athens. O WATR-FM Waterbury, Conn. WAUG-F A Augusta, Gia. WAUK-FM Waukesha, Wis. WAUP Akron, ohio WAVA.FM Arlington, Va. WAVQ Atlanta, Ga.
WAVU-FM Albertville, Ala.
WAVY-FM Portsmouth, Va. WAWK-FM Portsmouth, Ka. WAWR.FM Bowling Green. 0 . WAWZ.FM Zarephath, N. WAXO Kenosha, Wis. WAYL Minneapolis, Minn. (8) WAZL-FM Hazelton, Pa. WAZY-WBAA-FM Bo Laiayette, Ind. WBAB-FM Babylon. N.
WBAI New York, N.Y. WBAA NEW Fork, N.Y. Tex. (s) WBAY Green Bay. Wis. (s)
WBBB-FM furington. N.C. (s) WBBB-FM Rochester, W.Y.
WBBM.FM Chicago, III. WBBB-FM Forest City, N.C. WBBO-FM Augusta, Ga. WBBR -FM E. St. Low WBBS Crawfordsvillo, Ind. WBCA-FM Bay Minette. Ala. Hills. Pa. WBCI-FM WIlliamsburg, Va. WBCL.FM South Beloit, 111. WBCM-FM Bay City. Mich

WHITE'S RADOO L®G

C.L.
 Location

WBOE Cleveland, Ohio WBON Milwaukee, Wis. WBOR Brunswick, Maine WBOS.FM Brookline, mass. WBRC Birmingham, WBRD-FM Bradenton. Fia WBRE-FM Wilkes-Barre, Pa. WBRN.FM Big Rapids, Mich. WBSM-FM New Bedford, Mass. WBST Muncio, Ind.
WBT-FM Charlotte, N.C.(s) WBUD-FM Trenton, N. ${ }^{2}$ (s)
WBUF Buffalo, N,Y.
WBUR Boston Mass.
WBUY-FM Lexington, N.C WBVA Woodbridee, Va WBVP-FM Beaver Falls, Pa WBWC Berea, Ohio WBYO Boyertown, Pa. (s) WB2-FM Boston, Mass. WCAC Anderson, S.C. WCAO-FM Baltimore, Md WCAR-FM Detroit, Mich WGAS Knox vite, tenn. WCAU.FM PhiladeJphia, Pa. WCBC Catonsviite, Md. WCBE Columbus, Ohio WGBM-FM Baltimore, Md. WCBS-FM New York, N.Y. WCBW Columbia. II. WCCC-FM Hartford, Conn. WCCM-FM Lawrence, Mass WCCN-FM Neillsville, Wis. WCCV.FM Charlottesville, Va. WCDL-FM Carbondale, WCED.FM Dubois, Pa. WCEN-FM Mt. Pleasant, Mich.(s) WCER-FM Charlotte. Mich. WCFM Williamstown, Mass.
WCHA.FM Chambersburg. Pa.(s) WCHD Detroit, Mich.
WCHK-FM Canton, Ga
WCLE.FM Cleveland. Tenn. WCLI-FM Gorning. N. Y. WCLO-FM Janesvilie. Wi WCLT-FM Newark, Ohio WCLV Cleveland, O. (s) WCMC.FM Wildwod. Ohio WCMC-FM Wildwood, N.J. WCME-FM Brunswick. Main WCMF.FM Rochester, N.Y.(s) WCMI-FM Ashland. Ky.
WCMO Marietta, Ohio
WCMUFFM Mt. Pleasant, Mich. WCNB-FM Connersville, Ind.
WCNO Canton, Ohio(s)
WCNT-FM Centralia. Il
WCNW.FM Hamilton, Ohio
WCOA-FM Pensacola. Fla.
WCOD Richmond, V a.
WGOH-FM Newnan, Ga,
WCOL-FM Columbus, Ohi
WCOP.FM Boston, Mass WCOS. FM Columbia, S. WCOU-FM Lewiston, Maine WCOW.FM Sparta, Wis. WCPO-FM Cincinnati, Ohio WCPS.FM Tarbor, N.C. WCRA-FM Effingham, II WCRB-FM Waltham, Mass. (s) WCRD Blufton, Ind. WCRF-FM Cleveland, Ohio WCRQ Providence, R. I. WCRT-FM Birmingham. Ala. (s) WCSC.FM Charleston, S.C. WCSI-FM Columbus, Ind. (s) WCSQ Central Square, N.Y. WCST-FM Berkeley Sprillgs, W. Va

WCTA-FM Andalusia, Ala. WCTC-FM New Brunswick. N.J.
WCTW-FM New Castle, Ind. WCUF Akron, Ohio
WCUM-FM Cumberland. Md WCUY-FM Cleveland Hits.: Ohio WCWC.FM Ripon. Wis WCWM Williamsburg. Va. WDAC Lancaster, Pa. WDAE-FM Tampa, Fl WDAF.FM Kansas city, Mo WDAS. FMyton. ohio WDAY.FM Fargo, N .
C.L. Location

WDBJ-FM Roanoke, Va. WDBL-FM Springfield, Tenn. WOBN Akron, Ohio(s) WDBO-FM Orlando, Fla. WDCX Buffalo, N.Y.(s) WDCX Buffalo, N.Y.is WDDE Hamden, Conn, WDEC.FM Ampricus, N, Y, WDEE Hamden, Conn WDEL CM Chattanooga, Tenn WDET-FM WiImington, Del. WDET-FM Detroit, Mich. WOHA-FM Dover Park. (s) WDHA-FM Dover, N.J.(s) WDAF Chicago, IIt.
WDJK Atlanta. Ga.
WDJK Smyrma, Ga.
WDJR DiJ City, Pa
WDKN-FM Dickson, Tenn. WDMB.FM Statesville, N.C. WDNS. FM Lynchburg. Va. WDNC.FM Durham, N.C. WDOC-FM Prestonsburg. Ky WDOD-FM Chattanooga, Tenn. WDOK-FM Cleveland, ohio WDOL.FM Athens. Ga. WORC-FM Hartford, Conn WDRK-FM Greenville, Ohio WDRM Darien, Conn. WDSC.FM Dillon, S.C WDSU-FM New Orleans, La. WDTM Detrait, Mich.(s) WDTR Detroit, Mich. WDUB Granville, Ohio WDUN-FM Gainesville, Ga.(s) WDUQ Pittsburgh, Pa.
WDUX-FM Aberdeen, Wash, WDUZ-FM Green Bay, Wis.
WDWS-FM Champaign, WDXE-FM Lawrenceburg, Tenn. WDXL.FM Lexington. Tenn. WEAU.FM Eau Claire, Wis. WEAV-FM Plattsturgh, N.Y WEAW-FM Evanston, III. WEBH Chicago. III. WEBQ.FM Harrisburg, Ilt. WEBR-FM Buffalo, N.Y. WECl Riphmond, Ind. WEDA-FM Grove City, Pa WEDR-FM Miami, Fla. WEEC Springfield, Ohio WEED-FM Rocky Mount, N,C. WEEF-FM Highland Park, III. WEEL-FM Boston, Mass. WEEX.FM Easton, Pa. WEFA Waukegan, III. WEFM Chicago. Ill.(s) WEGO.FM Concord, N.C. WEIV Ithaca, N. Y WEKZ-FM Monroo. Wis. WELF Glen Ellyn, III. WELG Elgin, III.
WELP.FM E'asley. S. C.
WEMC Harrisonburg, Va.
WEMI Tampa, Fla.
WEMP-FM Milwaukee, Wis. WEOK-FM Pouphkeepsie, N. WEOL-FM Elyria, Ohio WEPM-FM Martinsburg, W.Va. WEPS Elgin, III.
WEQR Goldsboro, N.C. WERE-FM Cleveland, Ohio WERI-FM Westerly, R.I. WERM Wapakoneta, Ohio WERS Boston, Mass WERT-FM Van Wert. Ohio WESC-FM Greenville, S.C. WEST-FM Easton. Fa. WETL South Bend, Ind. WETN Wheaton, ifl. WEVC Evansvilio, Ind WEVD.FM New York, N. Y. WEWO-FM Laurinburg. N.C. WFAA-FM Dallas. Tex WFAC Mt. Dora, Fla. WFAH. FM Alliance, Ohio WFAN Washington, D.C. WFAS-FM White Plains, N.Y. WFAU. FM Augusta, Maine WFAW Fort Atkinson, Wis. WFBE Flint, Mich. WFBG-FM Altoona, Pa WFRM-FM Indianapolis, Ind. WFBS-FM Winston-Salem, N.C. WFCI Franklin, Ind. WFCJ Miamisburg, Ohio WFER Amherst, Mass. WFDR-FM Manchester, Ga. WFDS.FM Baltimore. Md. WFFM Cincinnati, Ohio WFHA.FM Red Bank. N.J. WFID Rio Piedras PRis) Whs WFID Rio Piedras. P.R.(s) WFI SM Phila. WFIN.FM Philadelphia, Pa. WFIU Bloomington, Ind.

C.L. Location

WFIZ Conneault, 0.
WFKO Kokomo, Ind.
WFLA.FM Tampa, Fla.
WFLM Ft. Lauderdale, Fla, (s) WFLN.FM Philadelphia. Pa. (s) WFLO Farmville, Va. WFLT-FM Franklin, Tenn. WFLY Troy, N, Y.
WFMA Rocky Mount, N.C.
WFMD-FM Frederick, Md.
WFME Newark, N.J.
WFMF Gaicago, titin, Tenn
WFMG Gallatin, Tenna
WFMH-FM Culiman, Ala
WFMI Montgomery, Ala.
WFMI Montgomery, Ala.
WFML Washington, Ind.
WFMM-FM Baltimore, Md.
WFMQ Chicago, III. (s)
WF MS Indianapolis. Ind. (s)
WFMT Chicago, III. (s)
WFMU East Orange, N.J.
WFMW.FM Madisonville, Ky.
WFMX Statesville, N.C.
WFNC.FM Fayettevili
WFNC.FM Fayettevilie, N.C.
WFNS.FM Burlington, N.C.
WFOB-FM Fine. Wis.
WFOL Hamilton Ohis WFOL Hamilton, Ohie(s)
WFOY.FM St. Auqustine.
WFPG Atlantic City, Ne, Fla
WFPG Atlantie City, N.J.
WFPL Louisville, Ky.
WFPL Louisvilie, Ky.
WFRE.FM Fresno. CaI.
WFRL-FM Freeport, III.
WFRO.FM Fremont, ohio WFST. FM Caribou, Maine WF U-FM Tallahassee, Fla. WFTW-FM Ft. Lauderdale, Fla WFUL.FM Fulton, Ky. WFUR-FM Grand Rapids, Mich. WFUV New York, N.Y. WFVA.FM Frederickstura, va. WFYC-FM Alma, Mich. WGAL-FM Lancaster, Pa. WGAR.FM Cleveland, Ohio WGAU-FM Athens. Ga. (s) WGAY Silver Spring, Md. WGBE-FM Columbus, Ga. WGBI.FM Scranton, Pa. WGBS.FM Miami, Fla. WGCB-FM Red Lion, Pa. WGCS Goshen. Ind.
WGEE-FM Indianapolis, Ind. WGEM-FM Quincy, III. (s) WGET-FM Gettysburg. Pa. WGFM Schenectady, N.Y. (s) WGGC Glas oow, KY. WGGM Taylorville, III. WGH-FM Newbort Nows, Va. WGHF Brooktield, Conn. (s) WGKA.FM Atanta, Ga. WGLI Babylon. N.Y. WGLM Richmond, Ind. WGLS Glassboro, N. J. WGMR.FM Tyrone. Pa. WGMS.FM Washindton
WGMZ Flint, Mich. (s) WGMZ Flint, Mich.(s)
WGNB St. Petersburg. Fla WGNC. FM Gastonia, N.C. WGNO Madison, III.
WGPA-FM Bethlehem, Pa.
(from Ga,
WGPC.FM Albany. Ga. (s)
WGPM Detroit, Mich.
WGPR Detroit, Mich. (s)
WGPS Greensboro, N.C.
WGR-FM Buffalo, N.Y.
WGR-FM Buffalo, N.Y. WGRE Greencastie, WGRP.FM Greenville, Pa. WGSU Genesco, N, Y, Tenn, WGSU Genesco, N, Y.
WGTS-FM Washington, D.C WGTS-FM Takoma Park, Md WGVE Gary, Ind.
WGWR-FM Asheboro, N.
WGYA Interlochear, Mich. WHA-FM Madison, Wis. (s) WHAD Delafield, WIS. WHAG.FM Halfway, Md. (s) WHAI-FM Greenfield, Mass. WHAT.FM Philadelphia. Pa. (s) WHAV-FM Haverhill. Mass. WHBC-FM Canton, Ohio WHBF.FM Rock Istand, III.(s) WHBI Newark, N.J. WHBM-FM Xenia. onio WHC1 Hartford City, Ind. WHCL.FM Clinton, N.Y WHCN Hartford, Conn. WHCU.FM Ithaca, N,Y. WHCH-FM Boston, Mass
WHDL.FM Allegheny. N.Y WHEB.FM Portsmouth. N.H. WHEN-FM Syracuse, N.Y.
C.L. Locafion

WHFB.FM Benton Harbor, Mich.
WHFC Chicago. III.
WHFI Birmingham, Mich
WHFM Roehester, N, Y,
WHFS Bethesda, Md. (s)
WHHI Highland, Wis.
WHHS Havertown, Pa.
WHIL-FM Medford, Mass.
WHIM-FM Providence, R.I. WHIO-FM Dayton, Ohio WHIZ-FM Zanesville, Ohlo WHJB Greensburg, Pa. WHK-FM Cleveland, onio
WHKW Chilton, Wis.
WHKY.FM Hickory. N. C. (s)
WHLA Hol men, Wis.
WHLD.FM Niagara Falls, N. Y.
WHLF-FM South Boston, Va,
WHLI-FM Hempstead, N.Y.
WHLM-FM Bloomsburg, Pa.
WHLS. FM Port Huron. Mich.
WHMA-FM Anniston. Ala.
WHME Marinette, Wis
WHME South Bend. Ind.
WHNC-FM Henderson, N.C.
WHNR McMinnville, Tenn.
WHO.FM Des Moines, lowa
WHOD-FM Jackson, Ala.
WHOK.FM Lancer
WHOK-FM Lancaster, Ohio
WHOM.FM New York, N.Y.
WHOO.FM Orlando, Fla. (s)
WHOP-FM Hopkinsville. Ky.
WHOS-FM Decatur, Ala,
WHOV Hampton, Va.
WHP-FM Harrisburg, Pa.
WHPE-FM High Point, N.C.
WHPS High Point, N.C.
WHRB.FM Cambridge, Mass,
WHRB. FM Cambridg.
WHRM Wausau, Wis.
WHSA Highland Twp., Wis.
WHSB Alpena. Mich
WHSR-FM Winchester, Mass WHTC.FM Holtand. Mich. (s) WHUB.FM Cookeville. Nen. WHUS Storrs, Conn.
WHYL.FM Carlisle. Pa.
WHYN-FM Springfield, Mass. WIAC.FM San Juan. P. R. (s) WIAL Eau Claire, wis.
WIAM-FM Williamston, N.C. WIAN indianapolis. Ind. WIBC-FM Indianapolis, ind. WIBF Jenkintown. PaWIBG.FM Philadelphia. Pa. WIBM-FM Jackson, Mich. WIBW-FM Topeka, Kan WICB Ithaca, N.Y.
WICR Indianapolis.Ind
WIF Glenside. Pa.(s)
WIFM Franklin. Ind.
WIKY-FM Evansville, Ind.
WIL-FM St. Louis, Mo,
WILL-FM Urbana, III.
WILO-FM Frankfort, Ind.
WILS-FM Lansing, Mic
WINA-FM Charlottesville, Va.
WINE-FM Kenmore, N.Y.
WINK-FM Ft. Myers, Fla.
WINT-FM Winter Haven, Fla.
WINZ-FM Miami, Fla.
WIOD.FM Miami, Fla.
WIP-FM Philadelphia. Pa.
WIPR-FM San Juan, P.R.
WIRA.FM Ft. Pierce, Fla.
WIRC.FM Hickory. N. C. (s)
WIRJ-FM Humboldt, Tenn.
WISA-FM Isabela, P.R.
WIRQ Rochester. N. Y.
WIRQ Rochester. N.Y.
WISH-FM Indianapolis, Ind. (s)

C.L. Locistion	tion	C.L. Location	C.L. Location
CW. FM Johnson City, Tenn.	WLIP.FM Kenosha, Wis.	WNES.FM Central City, Ky.	waxI.FM Atlanta, Ga.
WJOX.FM Jackson, Miss.	WLIP Hicksvill	WNEW.FM New York	WQXR-FM New York, N.Y.(s)
WJEF.FM Grand Rpds., Mich. (s)	WLIV.FM Livingston, Tenn	WNFM Naples, Fia	WRAJ.FM Anna, lil.
-FM Gallipolis,		Naples, Fta	WRAK-FM Williamsport, Pa.
WJEET.FM Erie, Pa.	WLMC Okeech	M Mayfeld,	R
WJGS Houghton, M	WLNA-FM Peekskill. N.Y.	WNAC-FM Now taven, Conn.	M C
WJHL-FM Joh	WLNA-FM La		
FM Tull	WLOA-FM Braddock, Pa. (s)	WNNJ-FM Newton, N.J.	WRC-FM Washington, D.C.
WJIV Cherry valley, N, Y.	WLOB.FM Portland, Maine	WNNR-FM New Orieans.	Yo
Alb	WLOC-FM M		
-		WNOK-FM High Point, N.C.	M As
WJL ${ }^{\text {cirmin }}$		WNOR-FM	M
d	WLOM Chattanooga, ${ }^{\text {chenn. }}$	M M Y	
		WNRE Circleville, Ohio	
wimk		M Lau	WRFS-FM Alexander city,
WJMC.FM Farenceils.c.	W		WRFY-FM Reading, Pa.
OF Athens	Roa	Me	WRIG.FM Wausau, Wis,
	WLS.FM Chicago, ill.	R Evanst	WR1P-FM Rosswille. Ga
FM Washington, Pa.	WLTA.FM Atlanta, Ga. (s)	-FM Ar	佺
	WLVL Louisvil	WNYE New Y	WRIN-FM Racine Wis.
FM Wilberforce, Onio	WLVP Frank	WOAK Royal	RKB.FM Kannapolis. N.C.
SM Martins	WLYM.FM Lynn, Mas	WOBN Westerville, ón	w
N.	WMAI.EM	WOC-FM Davenport. lowa ${ }^{\text {W }}$	WRKT-EM Cocoa Beach ${ }^{\text {W }}$
WJWR Pralmyra, Pa. ${ }_{\text {W }}$			W
		WOIT.FM Ames, 10 wa	
WKAQ.FM Sam Jua	w	de Ruyter, $\mathrm{N} . \mathrm{Y}$.	
-FM EMiami, Fla.	WMAX.FM Grand Rapids. Mich.	w	
-FM Gla	W	WOL.FM Was	
		W0L1 Ottawa, ili	
		wo	Wrow-FM
BN.F	WMCF Stuart. Fla, (s)	P-FM	
$\mathrm{M}^{\text {r }}$ Richmond, Ind.	WMCO New Concord, Ohio	WONE-FM Day	WRPN-FM, Ripon, Wls.
Berlin,	WMDE Greansboro, N.C.(s)	WOOD.FM	
-	WMEE-FM Orono. Maine		
N-F	WMER CMEM		WRSJ-FM Bayamon. P.f.
	WMFM Madison. Wis.(s)		WRSE.FM EIm
		WORA-FM Mayavuez. P.	Ba
Chicago. III.(s) -FM Battle Creek.		WORX-FM Madison. Ind	
WKHM-FM Jackson Mleh.			
ugh	W	WOTW-FM Nas	
WKIS-FM Orlando	auk	WOW-FM Oraha, 'Nebr.	
JE-FM Mayaguez,	W	WPAA Andover, Mass.	
FM	WMLS.FM Sylacauga, Ala.	WPAD-FM Paducah, KY. (s)	
A	WMLW Milwaul	M Portsmouth, Ohlo (s)	
		WPBC-FM Richnteld, Minn. (s)	
W M Mar	WMNA.FM Gretna, Va. ${ }_{\text {W }}$		
-FM Grand Rapids, Mich.	(s)	W	
Mich.	WMNI-FM Columbus, Ohio		WSAE Spring Arbor. Mich.
harleston, W.V	WMOU.FM Ber	w	
	WMPS.FM Memp	-	WSAU.FM Wausau. Wis.
		WPFK Los Angeles, Cad.	
OP. FM Binghamton,	WMRN-FM Marion, Ohio	Providence.	WSBE.FM Chicago. III. (s)
$\left\{\begin{array}{l} X \cdot F M \\ \bar{Z}-E M K \end{array}\right.$	WMROEM Aurora, ich.	WPGC	WSBF-FM Clemson, S.C.
PT.FM Kingsport, Tenn	WMSH-FM Elizabethtown. Pa	WPGF-FM Burgaw, N.C.	WSCI-FM Platteville, Wis.
Cincinnati, Ohio	Mand Pa .		WSEI OIney 111.
RT-FM Cortland, N.Y.	WMT-FM Cedar Rapids, lowa (s)	WP	ever
M Jamestown. N. Y.		WPIT-F	WSFM Birmingham. Ala. (s)
	WMT - Morristo	+	WSHU Fairfleld. Conn.
harloston, S.C.	TN-FM Mor	$\begin{aligned} & \text { WPJB- } \\ & \text { WPKM } \end{aligned}$	
mayterille fla. (s)	M. Washinto	WPLB Greenville, Mich.	
Wheeling, w.va.	A Amherst	WPLN Nashvilla, Tenn.	W Stu ${ }^{\text {cher }}$
WKYX-FM Paducih, Ky.	WMUL Huntington, W.Va.	WPLO-FM At	WS
anbury, Conn.	WMUS-FM Muskegon, Mich	WPPA.FM Pottsville, Pa.	WSJG Hallandale,
WLAE Hartiord. Conn.	WMUU-FM Greenville, s.c.	WPRE winter	WSJS-FM Winston-Sal
AM.FM Lewiston.' Me.	WM UZ Detroit, Mlch.	WPRK Wia	WSL ${ }^{\text {a }}$
AN-FM Lancaster, Pa,	WMVB.FM Millifile, N.J.	WPRO-FM Providence, R.I.	WSLS- FM Roanoke, Vil. (s)
-M	WMVO-FM Mount Vernon, Ohio	WPRS. FM Paris,	Collegedale, Tenn.
Av.	WMYB.FM Myrtle Beach, Fla.	W	WSMD.FM Waldorf, Md.
WLBB-FM Carroliton, Ga.	WMYR.FM Ft. Myers, Fla.	Ra	WS
aurens-Clinton, S.c.	WNAD.FM	W	WSMT-FM Sparta, Tenn,
ky.	WNAV-FM An	WPTW-FM Piqua, ohio	$w s$
a.	W	WOA	WSOC-FM Charlotte, N.C.
WLCM-FM Lancaster. S.C	WNBF.FM Bi	DC.FM Midiand, Mich. (s)	w
k	-FM New Bedford,	wa	I
Jacksonvilie. ${ }^{\text {S }}$,		wo	WSOY-FM Decatur, ili.
WLET. FM Toctoa, Ga.		WQMS W Wamilit	WSPA-FM Spartanbury, S.C
WLIB.FM New York.' N.Y. WLINDetroit Mich	WNDU.FM South Bend, Ind. WNEM.FM Bay City, Mich. (s)	WORS.FM Detroit, Mich.	WSPB-FM Sarasota, Fia. WSPD.FM Toledo, Ohio

C.L. Location

WSPE Springville, N. Y. WSPT-FM Stevens Point, Wis. WSRW-FM Hillsboro or WSTC.FM Stamford, Ohio WSTC-FM Stamford, Conn. WSTP FM Saboro. Ky. (S) WSTR-FM Sturgis M, N.C WSTU-FM Sturgis, M WSTV-FM Steubenville, Ohio WSUW Platteville, Wis. SUW Wh Harrisonburg. WSVB Tamaqua ${ }^{\text {Wa }}$. SVB Tamaqua, Pa
WSVL-FM Shelbyville, Ind. WSWS-FM Crewe, Va, WSWM East Lansing, Mich. (s) WSWN - FM Belle Glade. Fla. WSYR-FM Syracuse, N. Y. (s) WTAD-FM Quincy, III. WTAP-FM Parkersburg, W. Va. WTAR Norfolk. Va.(s) WTAS Crete, III.
WTAW.FM College Station, Tex, WTAX-FM Springfield, Ill. WTAY-FM Robinson, iJI. WTBC-FM Tuscaloosa, Ala. WTBS Cambridge, Mass WTCO-FM Campellsville, Ky. WTCW -F M Whitesburg, Ky. WTCX St. Petersburg, Fla. (s)
WTDS Toledo, Ohio

WTGi Hammond, La,
C.L. WTHI-FM Terre Haute, Ind, WTIC Fiami, Fla. WTC.FM Hartford, Conn.(s) WT Charleston, W. Va WTIU Charlottesvillenn. WTMA-FM Charleston, S.C WTMB.FM Tomah. Wis. WTMJ-FM Milwaukee, Wis. (s) WTNC.FM Thomasville. N.C. WTOA Trenton, N.J.
WTOC-FM Savannah, Ga. WTOD-FM Toledo, Ohio WTOF Canton, Ohio WTOL-FM Toledo, Ohio WTOP-FM Washington, D.C. WTOS Wauwatosa, Wis. WTOT-FM Marianna, Fla
WTRC-FM EIkhart, Ind. WTRE Greensburg. Ind. WTRF.FM Wheeling, W.Va. WTSB-FM Lumberton, N.C. WTi:S.F M Buffalo, N.Y. WTSV-FM Clarenont, N.H WTTC-FM Towanda, Pa. WTTF-FM Tiffin, Ohio WTTR-FM Westminster, Md. WTTV-FM BJoomington, Ind. WTUN Tampa, Fla.
WUAG Greensboro, N, Ohio WUAG Greensboro, N. C
WUCB-FM Chicago, lll. WUCB-FM Chicago, Ill.
WUFM Utica, N.Y. (s) WUHY-FM Philadelphia, Pa. WULX-FM Richmond, Ind, WUNC Chapei HilJ, N.C. WUNC Chapel Hill, N. WUNH Durham, N.H. WUOM Ann Arbor, Mich. WUOT Knoxville, Tenn. WUSC-FM Columbia, S.C WUSF Tampa. Fla. WUST-FM Bethesda, Md WUSV Scranton, Pa. WUWM Milwaukee, Wis WVAM-FM Altoona. Pa
C.L.

WVBU-FM L.ewisbury, Pa, WVCA.FM Gloucester, Mass WVCG-FM Coral Gables, Fla. (s) WVEC-FM Hamptan, Va.
W:EH Springurlal, WVGR-FM Grand Rapids, Mich. WVHC Hembstead, N.Y. WVHI Evansville, ind. WVIC-FM E. Lansing, Mich. WVIP-FM Mount Kisco, N.Y. WVIS Terre Haute, Ind. WVJS.FM Owensboro, Ky. WVKC-FM Galesburg, IIf. WVLK.FM Lexington, Ky.(s) WVLR Sauk City, Wis. WVMC-FM Mt. Carmel, JII. WVNA-FM Tuscumbia, Ala. WVNJ-FM Newark, N.J.
WVNO-FM Mansfield. Ohio(s) WVOR Rachester, N.Y. WVOS.FM Liberty. N,Y. WVOT-FM Wilson, N.C. WVOX-FM New Rochelle. N.Y. WVPO-FM Stroudsburg, Pa. WVQM Huntington, W.Va. WVSH Huntington, Ind. WVST St. Petersburg, Fla WVIS Terre Haute, Ind. (s) WVVV Blacksburg, Va. WVWO-FM Cheyenne, Wyo. WWCF Greenfield, Wis. WWCO-FM Waterbury, Conn. WWDC-FM Washington, D.C. WWDL Scranton, Pa. (s)
WWGP-FM Sanford, N WWGP-FM Sanford, N.C.
WWHC Hartford City. Ind WWHC Hartford City. Ind
WWHG-FM Hornell, N. Y. WWHJ Muncie, Ind. WWHO Jackson, Miss. WWIL-FM Ft, Lauderdale, Fla. WWJ-FM Detroit, Mich. WWJC-FM Superior. Wis. WWIKS Macomb, III. WWLA La Crosse, Wis.
WWMO Reidsville, N.C.

C.L.

Location
WWMT New Orleans, La. (s) WWOO-FM Lynchburg, Va. WWOG Boca Raton, Fla. WWOM.FM Nuffato, N.Y. WWON-F M Woonsocket, Li. WWON-FM Woonsocket, R.I. WWOS Palm Beach. Fla. WWST-FM Wooster, Ohio WWSW-FM Pittsburgh, Pa WWSV.FM Cadillar, Mich. WWVA-FM Wheeling, W, V a. WWWS Greenville, N.C. WWYN-FM Erie. Na WXAX Elkhart, Ind. WXBM-FM MiIton, Fla. WXBR Cocoa Beach. Fla. WXEL Louisville, Ky. WXEN-FM Cleveland, Ohio WXFM Elmwood Park, III. WXHR Cambridge, Mass. WXPN Philadelphia, Pa.
WXQR.FM Jacksonville, WXRA Woodbridge, Va WXRI Norfolk, Va. WXTO-FM Grand Rapids, MIen. WXUR-FM Media, Pa. WXYW Suffolk, Va. WXYZ-FM Detroit, Mich. WYAK Sarasota, Fla.(s) WYBC.FM New Haven, Conn. KYDD New Kensington, Pa. WYCA Hammond, Ind. WYCE Warwick. R.I. WYCR York-Hanover, Pa, WYFE Lansing, Mich. WYFI Norfolk, Va. (s) WYFS Winston-Salem, N.C. WYSL-FM Buffalo, N. Y WYSO Yellow Springs. Ohio WYZZ Wilkes-Barre, Pa, WZAK Cleveland, 0 . WZEP-FM DeFuniak
N. C. nn. a. N.C hio

Springs, Fla. WZIP. M Cincinnati. Onlo

Canadian AM Stations By Call Letters

C.L. Location	Kc.	C.L. Location	Kc.	C.L. Location	Kc.	C.L. Location	Kc.
CBA Sackville, N.B.	1070	CFNB Fredericton, N.B.					
CBAF Moncton, N. B. CBD St John	1300	CFNS Saskatoon, Sask.	550 1170	CHRC Quebec, Que.	810 800	CJRW Summerside, P.E.I. CJSL Estevan, Sask.	$\begin{aligned} & 1240 \\ & 1280 \end{aligned}$
CBD St. John, N. B.	1110	CFOB Fort Frances, Ont.	800	CHRD Drummondville, Que.	1340	CJL Estevan, Sask. CJSO Sorel. Que.	$\begin{aligned} & 1280 \\ & 1320 \end{aligned}$
CBE Windsor, Ont.	1550	CFOM Quebec, Que.	1340	CHRL Roberval. Que.	910	CJSP Leamington, Ont.	710
CBG Gander, Nfld.	690 1450	CFOR Orilia, Ont.	1570 560	CHRS St-Jean, Que.	1090	CJSS Cornwali, Ont.	1220
CBH Halifax, N.S.	860	CFOX Pointe. Claire, Que.	560 1470	CHSM Steinbach, Man.	1150	CJVI Victoria, B.C.	900
CBI Sydney, N.S.	1140	CFPA Port Arthur, Ont.	1230 1230	CHTM Thompson, Man.	1250	CJWA Sault Ste, Marie.	
$C B J$ Chicoutimi, Que.	1580	CFPL London, Ont.	$\begin{array}{r}1230 \\ \hline 80\end{array}$	CHUB Nanaimo, B.C.	610	Ont.	1240
CBK Regina, Sask.	540	CFPR Prince Rupert, B.C.	1240	CHUC Cobourg. Ontar	5700	CKAC Montreal, Que.	730
CBL Toronto, Ont.	740	CFQC Saskatoon, Sask.	600	CHUM Toronto 7, Ontario	1050	CKAD Middletown, N.S.	1490
CBM Montreal, Que.	940	CFRA Ottawa, Ont.	580	CHWK Chilliwack, B.C.	1270	CKAR Huntsville,Ont. CKAR-I Huntsville, ont.	630 1340
CBN St. John's, Nfld. CBO Ottawa, Ont.	640	CFRB Toronto, Ont.	1010	CHWO Dakville, Ont.	1250	CKAY Duncan, B. C.	1500
CBOF Ottawa, Ont.	1250	CFRC Kingston, On	1490	CJAD Montreal, Que.	800	CKBB Barrie, Ont.	950
CBR Calgary, Alta.	1010	CF	710 1260	CJAT Trail. B.	1340	CKKBC Bathurst, N.B.	1360
CBT Grand Falls, Nfld.	540	CFRS Simcoe, Ont.	1560	CJAV Port Alberi, B C	610	CKBI Prince Albert, Sask.	900
CBU Vancouver, B.C.	690	CFRY Portage la Prairie.	1560	CJAV Port Alberi, B.C.	1240	CKBL Matane, Que.	1250
CBV Quebec, Que.	980	Man.	920		1	CKBM Montmagny, Que,	1490
CBW Winnipeg, Man.	990	CFSL We	1340	C	14	CKBS St. Hyacinthe, Que.	1240
CBX Edmonton, Alta.	1010	CFSX Stephen	1340 910	C	0	CKBW Bridgewater, N.S.	1000
CBY Corner Brook, Nild.	990	CFTJ Galt, Ont.	10	CJBR Rimouski, Que.	900	CKCH Hull, Que.	970
CBZ Fredericton, N. B.	1480		1140	CJCA Edmonton, Alta.	930	CKCK Regina, Sask.	620
CFAB Windsor. N.S.	1450	CFUN Vancouver, B.	1410	CjCB Sydney, N.	1270	CKCL Truro, N.S.	600
CFAC Calgary, Alta.	960	CFVR Abbotsford, B.C.	1240	CJ	920	CKCM Grand Falls Nild.	620
CFAM Altona. Man.	1290	CFYK Yellowknife, N.W.	1340	CJCN	920	CkCN Sept-lles, Que.	360
CFAR Filn Flon, Man.	590	CFW B Campbell River B	1490		680	CKCQ Quesnel, B.C.	570
CFAX Victoria, B.C.	810	CFWH Whitehorse. Y, T.	1490 570	CJ	1240	CKCR Kitcherer, Ont.	1490
CFBC Saint John, N.B.	930	CHAB Moose Jaw, Sa	800	Cjov Drumheller Alta	1350	CKCV Quebec, Que.	1280
CFBR Sudbury, Ont.	550	CHAD Amos, Que.	800	CJEM Drumhelier, Alta.	910	CKCW Moncton, N.B.	1220
CFBV Smithers, B.C.	1230	CHAK Inuvik, N.W.T	860	CJ		CKCY Sault Ste. Marie, Ont.	920
CFCB Corner Brook, Nfld.	570	CHAT Medicine Hat. Alta	1270	CJFP R		CKOA Victoria, B.C.	1220
CFCF Montreal, Que.	600	CHCM Marystown, Nfld,	1270	CJ	1400	CKDH Amberst. N.S.	1400
CFCH Callander, Ont.	600	CHEC Lethbridge, Alb	1090	CJ	580	CKDM Dauphin, Man.	730
CFCL Timmins, Ont.	620	CHED Edmonton. Alta.	1090		940	CKDR Kenora, Ont.	900
CFCN Calgary, Alta.	1060	CHEF Granby, Que.	1450	CJIC Sault Ste Marie, Ont	940	CKEC New Glasgow, N.S.	1320
CFCO Chatham, Ont.	630	CHEX Peterborough. Ont.	1980	CJJC Langley, B.C.	1050	CKEK Granbrook. B.C.	570
CFCP Courtenay, B.C.	1440	CHFA Edmonton, Alta.	680	CJKL Kirkland La	850	CKEN Kentville, N.S.	1350
CFCW Camrose, Alta.	790	CHFC Churchill, Man.	1320	CJ	560	CKEY Toronto, Ont.	580
CFCY Charlottetown. P.E.I.	630	CHFI Toronte, Ont.	1540	CJ	10	CKFH Toronto, Ont.	1430
CFDA Victoriaville, Que.	1380	CHGB Sainte-Anne-de	1540	CJLS Yarmo	13	CKGB Timmins, Ont.	680
CFDR Dartmouth, N.S.	790	Pocatiere, Que,	1310	CJLX Fort William, Ont	1340	CKGM Montreal, Que.	980
CFGB Goose Bay, Nfld.	1340	CHIC Brampton, Ont.	1090	CJME Regina, Sask.	800	CKJL Saint-Jérome, Que,	900
CFGM Richmond Hill, Ont.	1310	CHIQ Hamilton, Ont.	1280	CJMS Montreal, Que.	1300	CKKW Kitchener, Ontario	1320
CFGP Grande Prairie, Alta,	1050	CHLC Saguenay Co., Que.	580		1280	CKLB Oshawa, Ont.	1350
CFGR Gravelbourg, Sask.	1230	CHLN Trois-Rivières, Que,	550	C	1420	CKLC Kingston, Ont.	1380
CFGT Saint-Joseph-d' Alma,		CHLO St, Thomas, Ont.	680	C		CKLD Thetford Mines, Que,	1230
Que.	1270	CHLT Sherbrooke. Que.	630	CJOB Winnipeg Man		CKLG Vancouver. B.C.	730
CFJC Kamloops, B.C.	910	CHML Hamilton. Ont.	900	CJOC Lethbridge, A	1	CKLM Montreal. Que.	1570
CFJR Brockville, Ont,	1450	CHNC New Carlisle, Que.	610	CJON St. John's	9	CKLN Nelson, B.C.	1390
CFKL Schefferville, Que.	1230	CHNO Sudbury, Ont.	900	CJor Vancouver, B.	600	CKLS La Sarre, Que.	1240
CFLM La Tuque, Que.	1240	CHNS Halifax, N.S.	960	cJox Grand Bank. Nfld.	710	CKLW Windsor, Ont.	800
CFLV Valleyfield, Que.	1370	CHOK Samia, Ont.	1070	CJOY Guelph, Ont.	1460	CKLY Lindsay, Ont.	910
CFMB Montreal, Que.	1410	CHOV Pembroke, Ont.	1350	CJQM Winnipeg, Manitoba	1470	CKML Mont Laurier, Que,	610
CFML Cornwall, Ont.	1110	CHOW Welland, Ont.	1470	CJRL Kenora, Ont.	1220	CKMP Midland, Ont.	1230
CFMR Fort Simuson, N.W.T.	1490	CHQM Vancouver, B.C.	1320	CJRN Niagara Fails, Ont.	1600	CKMR Newcastle, N.B.	790

C.L Location

CкnB Campbellton, N.B.
CKNL Fort St. John. B.G.
CKNW New Westminister, B.C.

GKNX Wingham, Orit.
CKOC Hamilton, Ont
Cкок Penticton, B.C
CKOM Saskatoon, Sask.
CKOT Tilsonburg, Ont.
CKOV Kelowna. B.C.
CKOX Woodstock, Ont. GKOY Ottawa, Ont.

Kc. C.L. Locotion
950 CKPC Brantford, Ont.
950 CKPG Prince George. B.C. CKPM Ottawa, Ont.
CKPR Port Arthur, Ont.
CKPT Peterborough. Ont.
150 CKRB Cté de Beauce. Que.
800 CKRC Winnipeg. Man.
1250 CKRD Red Deer. Alta.
510 CKRM Regina. Sask.
630 CKRN Rouyn, Que.
340 CKRS Jonquière Que.
i310 CKSA Lloydminster. Alfa.

Ke. C.L. Location
Kc. C.L. Location
Kc.

CKSB Saint-Boniface, Man.
CK SL London. Onf.
CKSL London. Ont.
CKSM Shawinigan. Que. CKSM Shawinigan. Q
CKSO Sudbury, Ont. CKSO Sudbury, Ont.
CKSW Swlft Current. Sask. CKTB St. Catharines. Ont CKTK Klitmat. B. C. CKTR Trois-Rivieres, Que
CKTS Sherbrooke Que CKTS Sherbrooke, Que. CKUA Edmonton, Alta. CKVD Val-d'Or, Que. CKVL Verdun, Que.

050 CKVm Ville-Marie, Que 710 1290 CKWL Williams Lake, E. C. 1240 1220 CKWS Kingams Lake, B. C. 1240 700 CKWSKingston. Ont. 960 790 CKWW Windsor, Ont. 580 400 CKWX Vancouver. B.C. 1130 CKX Brandon. Man. 1150 CKXL Calgary, Alta. 1140 $\begin{array}{ll}\text { CKY Winnipeg, Man, } & 580 \\ \text { CKYL Peace River. Alta. } & 610 \\ \text { VK }\end{array}$ VOAR St. John's Nifi.
VOCM St. John's Nild.
VOWR St. John's, Nftd. $\quad 800$

Canadian FM Stations by Call Letters

Abbreviations: (s) broadcasts stereo

Cuba and Mexico AM Stations by all Letters

The broadcast stations listed below carry regular program material and transmit with 5000 watts or better power output during at least part of their broadcasting day.

World-Wide Short-Wave Stations

The World-Wide short wave stations section of White's Radio Log is, as its name implies, a log, that lists stations actually monitored by listeners in the United States, Canada and overseas. It is not intended to be a listing of all shortwave transmitters, licensed as such listings contain numerous inactive transmitters, and low powered stations which are rarely heard by DX'ers. The stations listed here, therefore, are those most often reported and consistently heard during the past few months. Many have been monitored by DX Central, the official Radio-TV Experimenter monitoring post in New York City.

Because of the fact that this \log represents actual monitoring reports rather than data taken from published program schedules received from the stations, you may find that frequencies (and operating times) given here differ from official listings. This is because foreign short-wave stations frequently operate several kilocycles away from their assigned (and announced) frequencies. In addition, the schedules of these stations are often changed and the changes are not published in the schedules' until many months later. We feel that the type of \log which White's Radio Log is presenting represents a very realistic picture of the current status of short-wave broadcasting, and is something which cannot be obtained elsewhere.

For the DX'er. If you care to roam the bands for DX, we present here some information which will be of invaluable use to you in tracking down DX stations.

Although the current radio propagation conditions have made the high frequency bands (11 and 13 meter bands) relatively poor for DX'ers, the other bands are generally good during certain periods of the year. As a general rule, the following bands are "hot for DX" during the daily and seasonal times indicated:

60 -meter band $=$ Winter nights.
49 -meter band $=$ Winter nights.
41 -meter band $=$ Winter nights.
31 -meter band $=$ Nights, all year.
25 -meter band $=$ Nights, all year.
19 -meter band $=$ Days all year, and Summer nights.
16- meter band = Days, all year, and Summer nights.
13 -meter band=Days, all year.
11 -meter band $=$ Days, all year.

More on QSL's. In the last issue of RA-dio-TV Experimenter we discussed the collecting of QSL cards from broadcasting stations, one of the finer aspects of the art of DX'ing. When our issue came out we received considerable mail asking about the possibilities of QSL cards from non-broadcasting radio stations, such as hams, police, ships, etc.

Ham stations generally swap QSL cards with each other after a "contact," and a good percentage of ham operators will also QSL a monitoring report if they find it useful. The addresses of ham operators may be obtained from The Radio Amateurs Callbook which may be purchased at Ham radio stores or by mail from any of the major parts supply houses.

Police stations, ships, and other "odd ball" stations sometimes QSL, but generally they will ignore your report unless you include with it a prepared QSL card (stamped, too) which they can sign and return to you without much bother. The radio-telephone stations frequently heard with test tapes on single-sideband are tough to QSL because they prefer to keep their transmissions as unpublicized as possible.

Citizens Band operators will frequently QSL SWL reports, but finding their addresses is a problem because of the absence of adequate callbooks. Each month there is a listing of about 1000 CB operators in S9 Magazine, which is available on many newsstands throughout the U. S. and Canada.

In our December-January issue we had an item about a station calling itself "Radio Free Dixie." In a report just received from Bill Brubaker of Miami, Fla., we understand that they are on from 2300 to 2400 EST on 690 kc 's with a powerful signal. Programs consist of jazz music and commentaries. Our expert on "weirdo stations," Tom Kneitel, K3FLL/WB2AAI, says that this is a bootleg station operated in Cuba by Castro, designed to stir racial unrest throughout our southern states.

In our listings, a station or frequency marked with an asterisk $\left({ }^{*}\right)$ indicates a nonbroadcast station or frequency. This might include aeronautical, maritime, military, or other type of transmission, either in regular AM or single sideband (SSB). In instances where many non-broadcast stations use the
same frequency, we have given you a clue as to the type of stations to be found there, rather than pin down only one station.

Let Us Know. Listeners are invited to submit their loggings to us for publication in the Shortwave section of White's Radio Log. Be sure to include the following information for each station you report: approximate frequency, callsign and/or station name, city and country, and time heard in Eastern Standard Time, 24 hour clock. Address your reports to: DX CENTRAL, White's Radio Log, c/o Fadio-TV Experimenter, 505 Park Avenue, New York, N. Y. 10022, U.S.A.

Time To Listen. All times shown in White's Rad!o Log are in the 24 hour EST clock system. For example, 0800 is $8: 00$ AM EST, 1200 is noon EST, 1800 is 6 PM EST, and so on. For conversion to other time zones, subtract 1 hour for CST (0800 EST is 7 AM CST), 2 hours for MST, 3 hours for PST.

The following abbreviations are used in our listings: $\mathrm{BC}-$ Broadcasting Company, Corporation, or System; E-Emissora; RRadio or Radiodiffusion; V-Voice or Voz.

TNX. We are indebted to the following DX'ers who added their loggings to those of DX CENTRAL, the official Radio-TV Experimenter monitoring station in New York City, to bring you this month's listings:

Tom Kneitel, New York, N.Y.
Dave Mateyka, Steger, ill.
Richard F. Kline, Englewood, N.J.
Dale Koby, Van Nuys, Calif.
Robert Luke, Canton, Ohio

Roger Camire, Manchester, N.H.
Harvey Conely, Rockaway, N.J.
Bob Pressey, Glenview, III.
Peter Grenier, Fall River, Mass.
Alan Kapala, Lodi, N.J.
Warren Lambard, Alexandria, La. Irwin Tatelman. Chicago, IIl.
Glenn W. Dye. Wildwood, N. J.
P. Richmond, Chilliwack, B.C.

Gerald W. Dickson, Scarborough, Ont.
Richard Tygrest, Hopewell, Va.
Walter L. Read, North Bend, Ore.
Dale Slack, Springhill, La.
Walter P. Pyne, Hagerstown, Md.
Edmond N. Roux, Lowell, Mass.
L. P. Ackerman, Phoenix, Ariz.

John Engel, Mankato, Minn.
Ralph J. Monson, Lancaster. Va.
Mike Poulter, San Angelo, Texas
L. Bruce Meyer, Portland, Ore.

Lawrence Whitehead, Wewoka, Okla.
Sol Nussbaum. Brooklyn, N.Y.
David Wood, Dearborn Hts, Mich.
Ronald Smelizer, Montreal, Que.
Shaler Hanisch, Hartford, Conn.
Peter De Hart, Middletown, Pa.
Doug Lamerson, Richmond Hill, N.Y.
A2C Manuel Borges, Walker AFB, N.M.
Rick Slattery, Miami, Fla.
Dr. Gerhart Heinisch, Winnipeg. Man.
W. T. Grubb, Dubuque, Iowa

Julian M. Sienkiewicz. Brooklyn, N.Y.
Steve Wilkes, Dallas, Tex.
Dennis Letendre, Miami, Fla.
Edward F. Wiegano, Rochester, N.Y.
Frank J. Voltz. Trenton. N.J.
Norman Hopkins. Neligh, Nebr.
Robert Wilson, Flushing, N.Y.
Karl Simmons, Jacksonville, Fla.
Gordon Amey, Jr., Baltimore, Md.
Melvin Hickman, Walla Walla, Wash.
Barry L. Schneider, Flushing, N.Y.
Bolling Smith, Camerton, N.C.
Frank Fox, Inman, Kans.
Steve Shimko, Baltimore, Md.
Carl C. Ebbetts, Travis AFB, Calif.
Geoff Check, Lacon, 111.

Freq.	Call	Name	Location	EST	Freq.	Call	Name	Location	EST
2246	-	R-TV Francaise	St. Denis, Reunion 1. St. Georges, Grenada	2130	3940	MCM	V. of America BBC	Ckinawa London, England London Enaland	$\begin{aligned} & 1 ; 00 \\ & 2: 00 \end{aligned}$
					3953				
2415	-	Windw. I. BC		1740	3975	GRC	BBC	London, England Khabarovosk, USSR	00
					4273		Govorit Khabarovsk R.TV Francaise		15500 2130
2430	YVCN	Escuelas R.	San Fernando. Venez.	2105	4807	$\overline{\mathrm{ZYH}} 27$	R.TV Francaise R. Icarema de Fort.	St. Denis, Reunion Fortaleza, Brazil	2130 1900
2966	PJG*	Curacao	Curacao, Neth. Ant.	1818	$\begin{aligned} & 4835 \\ & 4850 \end{aligned}$	ZYA	R. Roraima Mauritius BC	Boe Vista, Brazil	30
	CM1*			1818 1825				Forest Side,	1230
	KIL8*	Aliami	Miami, Fla.	1921	4865	CSA93	E. Nacional	Ponta Delgada,	
	6YK*	Kingston	Kingston, Jamaica	1837				Azores	1725
	WEK**	New Orleans	New Orleans, La.	2100		PRC	R. Clube do Para	Belem, Brazil	26100
	WHZ*	Byaboa	Balboa, C.Z.	2006	4868	OAZ4T	R. Chanchamayo	La Merced, Peru	1800
	WWA3*	Son Juan	San Juan, P.R.	2022	4873	CP66	R. Centenario	Santa Cruz, Bolivia	2200
3240	-	R-BaghdadV/indw.1. $B C$	Baghdad, Iraq St. Georges, Grenada	1700	$\begin{aligned} & 4874 \\ & 4875 \end{aligned}$	HCMG7	R. Rio Amazonas R. Villavicencio	Villavicencio, Colombia	1800
3280	-			1700					1800
3284	VRH9	Fii BC	Suva, Fijils.	0500	4890	-	Austr. BC Comm.	Pt. Moresby, Papua	1500
3305	YVKX	V. de Patria	Caracas, Venez.	2150	4899	HCVS6	V. de Saquisili.	Saquisili, Ecuador	1900
3340		R. Uganda	Kampala, Uganda	0845	4925	EAJ206	V de Rio Muni	Bata, Span. Guinea	16.25
3346	VRH9	Fiii BC	Suva, Fiij ls.	0330	4939	HCXZI	R. Nacional	Quito, Ecuador	$2 \cdot 30$
3368	HI2D	R. Hit Musical	Santo Domingo, Dom. Rep.	0600	$\begin{aligned} & 4960 \\ & 4965 \end{aligned}$	二	R. Quito R. Santa Fe	Quito, Ecuador Santa Fe,	$2: 20$
3380	-	T TV Francais	St. Denis,Reurion 4.	$\begin{array}{r} 2130 \\ 1637 \end{array}$	4970	YVLK	R. Rumboa	Colombia Caracas, Venez.	18451745
3910	$\overline{\text { C }}$	Far East Net.	Tokyo, Japan		4973	-	R. Yaounde	Yaounde,	
3930	CR4AC	R. Barlavento	S. Vicente, Cape					Cameroon	1630
3940	ZBW3	R. Hong Kong	Verde ls. Hong Kong	1740 0445	4975	ZYV9	R. Timbira R. Uganda	Sao Luis, Brazil	1830 0960

VHITEE

Freq. Call	Name	Location	EST	Freq. Call	Name	Location'	EST
9670	R. Mecca	Mecca, Saudi Arabia	0930	$\begin{aligned} & 15085- \\ & 15095- \end{aligned}$	R. Moscow R. Peking	Moscow, USSR Peking, China	$\begin{aligned} & 19915 \\ & 19300 \end{aligned}$
9675	R. Warsaw	Warsaw, Poland	0230	1505 -	R. Pakistan	Karachi Pakistan	10335
9680	R. Erivan	Erivan, Armenian SSR	0330	$15100-$	R. Hanoi	Hanoi, Vietnam (N.)	1900
9690 LRA32	RAE	Buenos Aires, Argentina	0500	$\begin{aligned} & 15105 \text { VUD } \\ & 15110 \text { XERR } \end{aligned}$	All India R. R. Comerciales	alcutta India Mexico City, Mex.	10500 1045 1300
9700	E. Oficial	Luanda, Angola	0445	ZL21	N.Z. Calling	Wellington, N.Z.	1830
9700 KCBR	4 FRS	Delano, Calif.	2030	15120 -	R. Warsaw	Warsaw Poland	0230
9705 ETLF	R. V. of Gospel	Addis Ababa, Ethiopia	1300	$\begin{aligned} & 15125= \\ & 15130= \end{aligned}$	R. Kabul V. of America	Kabul, Afghanistan Honolulu, Hawaii	10500 1718
9710	Mauritius BC	Forest Side. Maurit.	0430	15135 WRUL	R. Havana R. N.Y. Worldwide	Havana, Cuba New York, N.Y.	1300 0700
9715	Far East BC	Manila, Philippines	2100	15140	R-TV Francais	Paris, France	1230
9728	Kol Yisrael	Jerusalem, Israel	1515	15140 -	R. Moscow	Moscow, USSR	2230
9730	Q. Moscow	Moscow, U'SSR	2230	15150 -	R. Rodina	Moscow USSR	13300
9735 DMQ:	Jeutsche Welle	Cologne, W. Germany	1710	151	U.N.R. R. Osterreich	Greenville, S.C. Vienna, Austria	1530
9750	V. of Malaysia	Singapore, Malaysia	1830	$\begin{aligned} & 15155 \text { ELWA } \\ & 15165- \end{aligned}$	R. Village R. Damascus	Monrovia, Liberia Damascus, Syria	1630 10755
	2. Beiruit	Beiruit, Lebanon	1800	VUD	All India R.	Calcutta, India	0500
9755 ETLF	२. V. Gospel	Addis Ababa, Ethiopia	1000	OZF7	V. Denmark	Copenhagen, Denmark	1000
9760	२. Hanoi	Hanoi, N. Vietnam	1900	$15180-$	R. Moscow	Moscow, USSR	2200
9765 ETLF	2. V. of Gospel	Addis Ababa, Ethiopia	1045	$\begin{aligned} & 15190- \\ & 15210= \end{aligned}$	R. Damascus	Damascus, Syria Lagos, Nigeria	1830 1300
9770 OAX80	R. Amazonas	Iquitos, Peru	2010	KCBR	AFRTS	Delano. Calif.	10200
4VEH	V. Evangelique	Cap Hatien Haiti	0905	15225 -	R. Kabul	Kabul, Afghanistan	1530
9833	R. Budapest	Budapest. Hungary	1940	15240 -	R. Berlin Int'l.	Berlin, E. Germany	1300
9840	R. Hanoi	Hanoi, Vietnam (N.)	2330	$\begin{aligned} & 15260 \text { GSI } \\ & 15270- \end{aligned}$	R. Nat. Malagache	London, England Tananarive, Malag-	1450
9860	R. Peking	Peking China	1430			say Rep.	1100
10530 - ${ }^{\text {WAR* }}$	Sovorit Alma Ata	Alma Ata, USSR	0630 0216	CR7BG	R. Clube de Mozamb	Lourenco Marques, Mozamb.	1130
10638 WAR*	S.S. Army ${ }_{\text {Govorit Ulan Bator }}$	Washington, D.C	0216	15280 ZL4	N.Z. Calling	Wellington, N.Z.	1330
		Mongoliá	2030	15290 -	\checkmark. of America	Tangiers, Morocco	1100
11650	R. Peking	Peking. China	0455	15300 DZH9	Far East BC	Manila, Philippines	1700
11752 -	R. Pakistan	Karachi, Pakistan	0835	15320	\checkmark of America	Monrovia, Liberia	1500
11705 KCBR	AFRS	Delano, Calif.	0800	153	R. Berlin Int'l.	Berin, E. Germany	1030
-	R. Sweden	Stockholm, Sweden	0600	15345 LR	RAE	Buenos Aires.	0900
11710 VUD	Hellenic BC	Athens, Greece	0220	15360 -	Radio Free Europe	Munich, Geirmany	0850
11710 VUD	All India R.	Calcutta, India	0500	15385 DZF3	Far East BC	Manila, Philippines	2000
11765 -	C. Berlin Int'I.	Berlin, E. Germany	0700	15400 -	RAI	Rome, Italy	0400
11720 CHOL	Canadian BC	Montreal, Que.	0715	15410 KCBR	AFRTS	Delano, Calif.	1630
11740	Far East BC	Manila, Philippines	2100	15425 -	R R. Nederland	Hilversum, Neth.	11730
11750	E. Beiruit	Beiruit, Lebanon	2030	15440 WRUL	R. N.Y. Worldwide	New York, N.Y.	0700
11760	E. Hanoi	Hanoi, Vietnam (N.)	1900	15445 HCJB	R. Nederland	Hilversum, Neth. Quito, Ecuador	1230 1730
11770 VUD	All India R.	Calcutta, India	0500	-	V. of America	Monrovia, Liberia	1230
1770 VUD	E. Tupi	Sao Paulo, Brazil	1700	15450 PZC	R. Suriname 16 Meter Band-	Paramaribo. Surinam	1017
11775 CP7	f. Illimiani	La Paz, Bolivia	1845		17700 to $17900 \mathrm{kc} / \mathrm{s}$		1017
11780	Htvarp Reykiavik	Reykiavik, Iceland	0730	17720 WINB		Red Lion, Pa.	1330
ZL3	H.Z. Calling	Wellington, N.Z.	1830	$17730-$	U.N. R.	Bound Brook, N.J.	1030
11790 KCBR	AFRS	Delano, Calif.	2100	17760 WRUL	R. N.Y. Worldwide	New York, N.Y.	${ }^{1} 700$
11795 DMQ1I	Deutsche Welle	Cologne, W. Germany	0445	$17770 \text { GSG }$	RAI	Rome, Italy London, England	1035 $C 730$
$11800-$	F. Nacional	Canary Is.	1900	17800 -	RAI	Rome, I'taly,	0400
	F.. Ceylon	Colombo, Ceylon	0930	17810 DZ16	Far East BC	Manila, Philippines	2100
11805	Utvarp Reykjavik	Reykjavik, Iceland	1930	17820 KCBR	AFRTS	Delano, Calif.	1630 1050
-	F. Globo	Rio de Janeiro.		$\begin{aligned} & 17825 \text { LLN } \\ & 17830 \text { — } \end{aligned}$. Norway R. Ceyton	Oslo, Norway	C400
			1900	17835	R. Peking	Peking, China	$0<55$
$11810-$	F. Sweden	Stockholm, Sweden	0730	17855	R. Havana	Hevana, Cuba	1000
11832 -	EAI	Rome, Italy	0400	17855 VUD	All India R.	Calcutta, India	0500
11832 -	F. Leopoldville	Leopoldville.		17865	R. Damascus	Damascus, Syria	1230
		Congo	1430	21520	U.N. R.	Bethany, Ohio	1030
11840 -	F. Warsaw	Warsaw, Poland	0230	21560	RAI	Rome, Italy	1035
	F. Hanoi	Hanoi, Vietnam (N.)	2330				
WRUL	F. N.Y. Worldwide	New York, N.Y.	1230				
\#1850 LLK	b. of Norway	Oslo, Norway	1025				
11855 WRUL	F. N.Y. Worldwide	New York, N.Y.	1515				
DZH8	Far East BC	Manila, Philippines	830				
11800 -	M. of Malaysia	Singapore, Malaysia	1830		CIECTRONICS \%		
- -	V. of Nigeria	Lagos, Nigeria	1400				
11910 -	F. Cairo	Cairo, Egypt	1700		\%		
11915 -	F. Damascus	Damascus, Syria	1830		-	- $1 \equiv \sqrt{-3}$.	
11920 -	Far East BC	- Manila, Philippines	0330			1) 0 0-3	
11938 -	F. Malaysia	*Kuala Lumpur. Malaysia	1830	4			
11940 WRUL	F. N.Y. Worldwide	New York, N.Y.	0700		Why 5 ,	-1) 0	
	Trans World R.	Bonaire, Neth. Ant.	1300				
11945 ZPA5	F. Encarnacion	Encarnacion. Paraguay	1720			$=E$	
11955 -	F. Kabul	Kabul, Afghanistan	2200		阿		
11970	F. Amman	Amman, Jordan	1745				
11810	F. Amman	Amman, Jordan	1600				
11990	F. Prague	Prague, Czech.	2005			Syamer	
15020 -	F. Moscow	Moscow, USSR	0915				
\$5035	R. Peking	Peking, China	0800				
$15050-$	F. Peking	Peking, China	0700	Me	d, our ace high-vol	oltage expert"	

Build the Aqua-Con

Continued from page 46
amplifier module. After the silicon rubber is applied, set the speaker aside to dry.

Final assembly and testing. The grommets are installed in " B " holes and the strain reliefs are mounted with $6-32 \mathrm{x} 3 / 8$-inch screws in holes "A" and "F." Center the speaker in the opening of the case, the speaker should be mounted face down in the case as shown in the Detail Drawing with the speaker lugs facing directly away from the two grommet holes "B." If done correctly the speaker cone will be facing the open end closest to grommet holes "B." The two strain reliefs in the case should face toward the back of the case.

Next prepare the 6 -volt battery cable. Cut a piece of plastic lamp cord 3 -feet long, and strip off $3 / 8$-inch of insulation from the end of each wire. Solder terminal lugs on the wires as shown in the photos. Knot one wire of the pair at each end of the cable to identify the positive lead. Using the silicon rubber carefully coat the area of the terminal lug where the wire is soldered and the insulation is stripped off. This seals water out of the cable safeguarding the copper wires from corrosion. Leave enough of the terminal lug free of silicon rubber so the lug can make good electrical connection with the battery terminals.

Solder 8 -inch leads to B1's battery clip. Coat the terminals on the battery clip with silicon rubber. Pass these leads through the cable clamp mounted in hole " F " on the back cover plate. It may be necessary to wrap several layers of plastic tape around these wires so they can be gripped by the cable clamp. Pass about 8 inches of wire from the microphone and 6 -volt battery cable through the cable clamps in the side of the case, but don't tighten the clamps yet.

Wire the unit according to the detailed wiring diagram. When complete, recheck all connections and the polarity of the battery connectors. Remember the end of the battery cable with the knot is the positive lead. When you wire terminal strip TS1, dress the leads so they come out straight away from the terminal strip. Don't mount TS1 until the unit has been tested and coated with silicon rubber. Tighten the cable clamps.

Install B1 in its holder, noting that if you use the mercury cell, the case is positive,
not negative, as in the alkaline cell. Connect the 6 -volt battery cable to B 2 .

Testing. Adjust the microphone on your throat, positioned just above the adams apple. The microphone elements should be equally spaced on both sides of the throat. When you speak, you should hear your amplified voice coming from the speaker. When you're sure that the unit is working, coat and seal TS1 with silicon rubber. Pay special attention to the points where the leads emerge. Mount TS1 with $4-40 \times 1 / 4$-inch hardware.

Mount transformer T1 between TS1 and the rear lip of the case. Connect the leads from T1 to terminal strip TS1, and cover everything over with silicon rubber.

The battery harness is assembled from two cotton straps. One strap is cut down to 18 inches and sewn onto the second strap, at a right angle, seven inches from the buckle of the first strap. The two rubber pads are cut out of $3 / 8$-inch closed-cell neoprene rubber. This is the same material that wet suits are made of. If you can't obtain this rubber in a $3 / 8$-inch thickness, use the more common $1 / 4$-inch thickness. These rubber pads are used to provide a non-slip surface between the tank and the battery.

Use and care. When you're using the Aqua-Com, speak slowly and enunciate each word carefully. If your Scuba rig uses either a single-, or a double-hose system, you won't be able to pronounce some sounds. You won't have this difficulty if you use a full face mask.

Adjust the microphone strap for a snug, but comfortable fit with the elements positioned so they are spaced equally on both sides of the neck, just above the adams apple.

Don't forget to remove both B1 and B2 between dives to conserve battery life. After the last dive of the day, remove the batteries and rinse all parts of the Aqua-Com including the batteries with clear water. Try to keep the Aqua-Com out of enclosed hot areas and out of direct sunlight as temperatures over 140 degrees may damage the transistorized amplifier. Incorrect connection of battery B2 may also permanently damage the battery. Remember that the positive lug is the one with the knot on it. If the AquaCom is treated with the same care normally accorded to Scuba equipment, the only maintenance likely to be needed is the replacement of the batteries when necessary. See you at 10 fathoms.

The Riddle of the Red Planet

Continued from page 36

launching in the 70's, should. For Voyager missions as planned are a true triumph in electronic staging. An eight-foot-diameter antenna is to ride on a large scientific platform to telcrise the planet's surface for a period of months. Its landers will take separate television pictures of the surface as it zeroes in toward the planet's surface.

Voyager landers will place five-foot parabolic antennas on the planet's surface to report soil findings, while another VHF selflevelling antenna beams its back-up news to the orbiter to be relayed back to earth separately. Voyager missions are even going to pick the spot where they'll land. Right now they hope to find a nice polar cap to land by or a spot in the dark areas astronomers have studied for centuries. And if all goes well, these sophisticated electronic reporters hope to keep telling Mars' story over a period of six months, and get the answers to all the questions man has asked about the red planet.

They're the Tops: To ease the suspense about just what we will learn from these vitally-important Mariner and Voyager missions, Radio-TV Experimenter scanned the field, chose two of our top Mars authorities to question.

Dr. N. H. Horowitz, of the California Institute of Technology in Pasadena, one of the biologists to werk out our present theory of life's origins, says that if we find chemical make-up of organisms on Mars resemble those on earth, we can assume living matter was transported from one planet to the other. He says "There is already some spectroscopic and other evidence suggesting that life may exist on Mars."

Dr. Stephen H. Dole of the Rand Corporation, who has written two books on habitable planets, isn't quite so optimistic about Mars. He doubts human life can exist there. "Mars is too small to produce or retain an atmosphere suitable for human beings."

He does believe though, that there are $600,000,000$ habitable planets in outer space, and that "The universe may be inhabited by varieties of men who are not only of separate species but whose criteria of habitability on planets may not be the same" as ours. In this context, there could be men on Mars. Dr. Dole sees future colonies of earth-men travel-
ling through space and settling down on $f \approx r$ planets, a process which may bring amazing evolutionary changes in man.

He thinks man may create new variations of himself as he adjusts to new atmospheres and new gravities, and that he will adapt fast genetically, thus changing his whole appearance.

Dr. Dole thinks future colonies of men will travel to Mars to live, folks who will draw

water from rocks, live in hermetically sealed "hot houses," grow their own food in the soil, though still be dependent to some extent upon supplies sent from earth.

The Antenna Hairdo. But before we sell the hard-won business or sublet the family household or start visualizing just what we will look like as outer-space citizens, this writer suggests we wait until Mariner and Voyager report "live" from Mars.

For we might possibly find ourselves confronted by the one-cyed fellow with the spike head and antenna hairdo our TV script writers envision. And in turn, spike-head might think earthlings with their two eyes, two ears, and their two legs were strictly weirdies from the pages of science fiction, and send us rocketing right back to earth.

When we do hear all the news from the six Mariner-Voyager missions, we should have an idea whether or not there are small men or no men on Mars. Whether the missions report a live Mars or a dead Mars, blue vegetation or only lichens and lonely plantlifeand this writer predicts we will find just that, lichens and plants and perhaps the records of a deceased civilization-we can never turn back after we have electronically landed on Mars.

For we will have challenged a new coastline, much as Columbus did five centuries ago, a new coastline that will beachhead new landings, not only in space, but in thought. Perhaps the most awesome element about man's latest electronics venture is we may be forced, when we know all we seek to know about Mars, to change our whole concepts of life and its origins.

See the Stars, Moon. Planets Close Upl

 3" ASTRONOMICAL REFLECTING TELESCOPEPhotographers 1 Adapt your camera to this Scope for ex-
cellent Telephoto shots and fascinating (x) 60 TO 180 POWER! Famous Mt. Palomar Typel An Unusual Buyl
 Mars, huge craters on the Moon, phases of venus nized and overcoated lock on both axes. Alum \%10 mitror. Telescope equipped with a 60 .
 tripod FREF, with Scope: ratuable STAR ENS', plus '"How ${ }^{6}$ Stock No. 85,050-HP $\$ 29.95$ Postpaid
$41 / 4$ " Reffecting Telescope-up to 225 Power
Stock No. 85,105-HP. $\$ 79.50$ F.o.B.
Superb 6" Reflector Telescope
Up to 576 Power. Equatorial mount and Pedestal Base
Stock No. 85,086-HP
\$199.00 F.O.B
BRILLIANT ELECTRONIC FLASH TUBES
FOR PHOTOGRAPHERS \& MECHANICS
FO
Time
Inht
tubes
Time your car ignitton, use for photo flash. signal
Itght, control device or as strobe light. These fash
tubes. filled with Nenon sas, have glass envelopes
with sealed electrode at cach end. Mft. by G. E.
Instructions incl.
Low voltage tube for low energy repetitive flash ap. plicationase Operates on an ancrde between 120 . and 5
$1 / /^{\prime \prime}$ diam. For igmition timing, uses $130-\mathrm{V}$. with 30 mfd dischaige STock N-bec. av. flash rate, $20 \cdot h r$. approx. life. Portable photo equipment application in covered refectors or hous.
ings protecting user from contart with high voltage. iow operating
voitage $400-$ to $550 . V$.) well suited for use with electrolytic type voltage $400-$ to $550 \cdot \mathrm{~V}$. well suited for use with electrolytic type
 pins serve as soldering terminals. Typical photo flash application uses
$450 . V$ on the anode with 1050 mid. cupacitance, 4200 lumen-sec $450 . V$. on the anode with 1050 mifd. capacitance, 4200 lumen-sec
output, peak lumen output $4 \times 106.2 /$ min. fash rate. STOCK NO. 40,726-HP.

'FISH' WITH A MAGNET

Go Treasure Hunting On The Boffom Great idea! Fascinating fun and sometimes tremendously profitable! Tie a ine to our 5-lb. Magnetdrop it overboard in bay, river, lake or ocean. Troll it along the bottom-your "treasure", haul can be outboard motors, anchors, fishing tackle, all kinds of metal valuables. 5 -lb. Mugnet is war surplus-Alnico V Type -Gov'i Cost $\$ 50$. Lifls over 150 lbs . on land-much greater weights under water. Order now and try this new sport. 5tock No. 70.571-HP 5-Ib. Magnet $\$ 12.50$ Postpaid Stock No. 70,570-HP 31/2 lb. Lifts 40 lbs..... $\$ 8.75$ Postpaid Stock No. 70,572-HP $71 / 2 \mathrm{lb}$. Lifts 175 lbs... $\$ 18.75$ Postpaid MALL COJPON for Fins CATAO5 "IP?

EDMUND SCIENTIFIC CO.. Barrington, N. J. Completely New 1965 Edition. 148 pages. Nearly 4000 Unusual Bargains.
Please rush Free Giant Catalog-hip.
Name
Address
Ctty. .
Zone

SOLVE PROBLEMS! TELL FORTUNES! PLAY GAMES! ACTUAL MINIATURE VERSION
 OF GIANT ELECTRONIC BRAINS Fascinating new see-through model computer actually solves problems, teaches computer
fundamentals.
adts,
subtracts,
muliplies hifts. conplements, carries, memorizes, counts compares. sequences. Atractively colored, ripid 32-page instruction bork covering operation, computer language Sta No. 0.683 HP. ... Stock No. 70,683-HP .$\$ 5.00$ Postpaid

NEW! EXPERIMENT WITH THE NEW

 FANTASTIC TOOL OF TOMORROW!

Measure . . . Solye . . . Study . . . Create with MOIRE PATTERNS KIT
A NEW, TIME-SAVING SHORT CUT TO ACCURATE ANSWER5 IN DOZENS OF APPLICATIONS

Here's your introduction to a whole new world of technology. Unlimited experiments. Vivid demonstrations. Fun for lab and home experimenters, hobbiests. Radios can be tuned to a fantastic sharpness. Inexpensively measure one part in bilion Measure diffraction pattern produced by lasers. Measure dow fusion of molecules in solution or heatraves. ne nath concents stress lines. distortion of metals. his fascinating optical prin cisually. Photogrape fantastic visual effects. Technically, moire ciple and achieve fantastic visual effects. superpositioning of patterns are predictable pasing elements which include equi one pattern over another. spaced linear, logarithmetic and circular rulings. Dr. Gerenew oster, Bronklyn foll. kientific tool. kit contains 8 basic patterns on both clear basic scientife tool. Rit contand lantern slide size $3^{1 / 4^{\prime \prime}} \times 4^{\prime \prime}\left(.005^{\prime \prime}\right.$ thick) and $.010^{\prime \prime}$ thick white Kromekote paper $3^{3 / 4^{\prime \prime} \times 4^{1 / 2 \prime \prime}}$ (conted one side) (1) Coarse grating, (2) $65-$-line grating, (3) Logarithmic scale (1) Coarse grating, (2) Rating, (4) Radial lines, 5 -degrees, (5) Equispaced circles, (6) Frasnel zone plate, (7) Sphere projection, (8) Cylinder projection; one piece $3^{1 / 4^{\prime \prime}} \times 4^{\prime \prime} 150$-dot screen on film; copy Dr. Oster's book, 'The Science of Moire Patterns"' an authoritative introduction to the fascinating world of moire
Stock No. 70,718-HP . $\$ 6.00$ Postpaid Stock No. 60,462-HP. Same as above without book $\$ 4.00$ Ppd. MOIRE PATTERN ACCESSORY KIT. For additional experiments. Incl. metallic balloon, calcite, two kinds of diffraction gratings, one-way mirror foil, polarizing materials, Ronchi rulings, assort ments of lenses.
Stock No. 60,487-HP $\$ 8.00$ Postpaid

Astonishing 3-Dimensional Color Effects

NEW MULTI-LENS THERMOPLASTIC SHEETING 10,000 Parabolic Lenses Per Sq. Inch
Art or type appears to float or sink. . illusion of depth up to $3 / 4^{\prime \prime}$. Accepts art work, silk screen painting, quality lithog. raphy. Used at World's Fair by Disney and Dali. Resists soiling easily cleaned. $22^{\prime \prime} \times 54^{\prime \prime}$ sheets. MULTI-LENSED LAMI NATED SHEETS-MOIRE PATTERN.
Stock No. 70,728-HP, Translucent, colorless . . \$ 9.50 Postpaid 5tock No. 70.729-HP, Vacuum-metalized back, $\begin{aligned} & \text { chrome colored } \$ 12.50 \text { Postpaid }\end{aligned}$ (Other sheets and sizes available)

BARGAIN! LONG \& SHORT WAVE ULTRA. VIOLET LIGHT SOURCE

Small! Lightweight! Portable! Most Powerful at the Price!
Newly developed for prospecting Newly developed or prospecting mineral collecting, fuorescent
demonstrations, etc. Most powerdemonstrations, etc. Most powerful source of long and short wave
ultra-violet light in one compact home-or-field unit! One source produces short wave UV radiation with peak intensity of 2537 angstroins. Other source produces long wave UV with peak intensity of 3660 angstroms. Unit has rugged all-metal housing. special circuitry for battery conservation, easy access for replacing tubes, extra large filters. Operates on house current or batteries. Lightweight, only 1 lb . 5 oz. Compact $5^{1 / 2^{\prime \prime}} \times 2^{\prime \prime} \times 8^{1 / 2 \prime \prime}$. Fully guaranteed 6 identified mineral specimens included.
Stock No. 70,259-HP
$\$ 24.95$ Postpaid
BATTERY ADAPTER CASE with shoulder strap.
Stock No. 70,260-HP
$\$ 5.75$ Postpaid

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BUILD YOUR OWN PHONE/CODE TRANSMITTER

This is just one of seven training kits programmed into NRI's Complete Communications course. You get actual practice in building your own crystal-controlled, phone/code transmitter and putting it on the air. You experiment with modulation "clamping" circuits, key filters, other aspects of commercial transmitter operation. Can be put on the air simply ty attaching an antenna and complies with FCC regulations. As with all NRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Industry, business offices, the government and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 carefully designed training kits, topping off your practical experience phase of training by experimenting with feedback control systems, analog computers and digital computer elements. You actually solve problems on this analog computer you build yourself. This is the practical, fast way to a good paying, career position.

BUILD A CUSTOM-ENGINEERED TELEVISION RECEIVER

Want to earn $\$ 3$ to $\$ 5$ an hour in spare time? Want your own parttime or full-time business? In Ra-dio-TV Servicing you learn to install, maintain, service radios, TV sets, hi-fi and stereo, other home Electronics equipment. In your training are eight training kits, including this complete, modern, slim-line TV receiver. You build it yourself, become tamiliar with components and circuits, learn servicing procedures . . . and earn extra money as you train. National Radio Institute, Washington, D.C.

SEE OTHER SIDE

FIRST CLASS
FERMIT
NO. 20-R
Washington, D.C.

BUSINESS REPLY MAIL

no postage stamp necessary if mailed in the united states

POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE 3939 Wisconsin Avenue
Washington, D.C. 20016

GET FAST START WITH NEW ACHIEVEMENT KIT
Delivered to your dooreverything you need to make a significant start in the Electronics field of your choice. An outstanding, logical way to introduce you to home-study training. It includes your first set of lesson texts and all the "classroom tools" you need. No other school has anything like the new NRI Achievement Kit.

ELECTRONICS COMES ALIVE WITH NRI TRAINING KITS
Nothing is as effective as learning by doing ... and NRI pioneered the "home lab" technique of training. NRI invites comparison with training equip. ment offered by any other school. Begin NOW this exciting program of prac. tical learning. Make the skills of the finest Electronic Technicians your own. Mail card below.

"BITE SIZE" TEXTS PROGRAM YOUR

 TRAININGCertainly, lesson texts are necessary. NRI's programmed texts are as simple, direct and well illustrated as 50 years of teaching experience can make them. They are carefully programmed with NRI training kits to make the things you read about come alive. You experience all the excitement of original discovery.

HOBBY? CAREER?
MAIL CARD NOW
TO NRI
Whatever your need whatever your education there's an NRI train. ing plan to fit your re. quirements. Choose from three major courses or select one of seven spe. cial courses in particular Electronic:s subjects. Check the postagefree card below, fill in and mail. National Radio In. stitute, V/ashington, D.C.

DISCOVER THE EASE AND EXCITEMENT OF LEARNING ELECTRONICS THE NRI WAY

S SEE OTHER SIDE

National Radio Institute, Electronics Div. Washington, D.C. 20016
Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call.)
\square TV-Radio Servicing
\square Basic Electronics
\square Industrial Electronics
\square Complete Communications
\square FCC License
\square Math for Electronics

Name \qquad Age \qquad

Address

City \qquad State \qquad Zip Code

Accredited Member National Home Study Council

PICK THE TRAINING PLAN OF YOUR CHOICE AND MAIL CARD FOR free catalog

OUR 50TH YEAR OF LEADERSHIP IN ELECTRONICS TRAINING

[^0]: \square Check or money order enclosed, ship post paid.

[^1]: \square Enclosed $\$ 3.00$ deposit, ship batance C.O.D., plus postage and C.O.D. charges.

[^2]: IF YOU OWN A CAR, you should buy ENGINE. Buy the 1965 edition today and keep it handy. It is an invaluable ready reference for maintenance, repairs, servicing, and what's new. Only 75c at all newsstands.

[^3]: When writing to manufacturers, always mention

[^4]: * The British Standard Concert Pitch for A above middle C has varied throughout the years and has not been in agreement with music societies of many other nations until 1939. Below is a list of dates and frequencies used by British musicians:

 1813 Original Philharmonic Pitch
 1846-54 Mean Philharmonic Pitch
 1874 Highest Philharmonic Pitch
 1896 New Philharmonic Pitch
 1937-8 Average pitch reached in perform-
 1939 ance by selected British orchest Standard Concert Pitch agreed to by international conference

[^5]: * A stop on an electronic organ is a switch that adds a sound character to the organ output. If more than one stop is switched on, their different sounds mix als would the sounds from instruments in an orchestra. Stops are given names which describe their characteristic sound. such as violin, saxophone, French horri, bass clarinet, flute, etc.

[^6]: PARTS LIST
 B1-9-volt or $221 / 2$-volt (see text)
 C1—25-mf., 25-vdc electrolytic capacitor
 C2—. 0015 mf ., 100 -vdc capacitor
 C3-. 00015 -mf., 100 -vdc capacitor
 C4-2-mf., 100 -vdc capacitor
 C5-. 2 or $.22-\mathrm{mf} ., 100$-vde capacitor
 Capacitors C2, C3, C4 and C5 should be either 5% or 10% units.
 C6-.1-mf., 75 -vde ceramic disc capacitor
 J1, J2—RCA phono jack
 LI-80-mh. RF choke (Meissner 19-2709)
 M1—VU meter (Lafayette 99G5024)
 Q1-2N586 transistor (RCA)
 R1, R2-10,000-ohm, $1 / 2$-watt resistor, 10%.
 R3-5,000-ohm miniature potentiometer (Lafayette 32G7355 or equiv.)
 R4-50,000-ohm audio taper potentiometer
 R5-See text
 R6-100,000-ohm audio taper potentiometer
 \$1-2-gang, 9 -pole 3 -position rotary switch (Lafayette 99G6170 or equiv.)
 $1-3^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ aluminum chassis box BuD CU2105A or equiv.)
 1-4-post (One is the ground terminall terminal strip
 Misc.-hardware, solder lugs, wire, tubing, battery hoider, solder, etc.

 Estimated cost: \$17.00
 Estimated construction time: 3 hours

[^7]: PARTS LIST
 C1, C2-30-mfd., 6-v electrolytic capacitor, subminiature type for printed circuit boards (Lafayette 99G6076 or equiv.)
 11, 12—\#49 (screw type) or \#49 (bayonet typel pilot lamp
 Q1, Q2-2N1302 transistor (RCA) (npn, average beta-100)
 R1, R2-10,000-ohm, $1 / 2$-watt resistor
 Misc.-Printed circuit board (optional), sockets for pilot lamps (optional), wire, solder, etc.

 ## Estimated cost: $\$ 3.00$

 Estimated construction time: 1 hour without printed circuit board

